首页 > 论文 > 中国激光 > 33卷 > 1期(pp:57-66)

光子晶体光纤非线性光学研究新进展

Progress in Nonlinear Optics with Photonic Crystal Fibers

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

光子晶体光纤(PCF),又称为多孔光纤(HF)或微结构光纤(MF),是一种单一介质,并由波长量级的空气孔构成微结构包层的新型光纤。光子晶体光纤呈现出许多在传统光纤中难以实现的特性,从1996年世界上制造出第一根光子晶体光纤以来,它便受到了广泛关注并成为近年来光学与光电子学研究的一个热点。介绍了光子晶体光纤的制作工艺、工作原理、基本特性、目前的研究重点和进展情况,重点评述了光子晶体光纤非线性光学方面的研究及其潜在的应用。

Abstract

Photonic crystal fibers (PCFs), also called holey fibers (HFs) or microstructure fibers (MFs), are a new class of single-material optical fibers with wavelength-scale air holes running down the entire length. PCFs were first developed in 1996 and have subsequently been the focus of increasing scientific and technological interest, due to their unique and promising properties. The manufacturing, principles, basic properties and applications of PCFs are briefly described. A detailed review of the research on the nonlinear effects and the possible applications of these effects of PCFs are presented.

投稿润色
补充资料

中图分类号:O 437

所属栏目:光纤元件

基金项目:国家自然科学基金(60278003);国家973计划(G1999075201,2003CB314904);国家863计划(2003AA311010)资助项目。

收稿日期:2005-10-08

修改稿日期:2005-12-01

网络出版日期:--

作者单位    点击查看

王清月:天津大学精密仪器与光电子工程学院超快激光研究室 光电信息技术科学教育部重点实验室, 天津 300072
胡明列:天津大学精密仪器与光电子工程学院超快激光研究室 光电信息技术科学教育部重点实验室, 天津 300072
柴路:天津大学精密仪器与光电子工程学院超快激光研究室 光电信息技术科学教育部重点实验室, 天津 300072

联系人作者:王清月(chywang@tju.edu.cn)

备注:王清月(1938—),男,天津大学精密仪器与光电子工程学院教授,博士生导师,主要从事超短脉冲激光技术及其应用方面的研究。

【1】E. Yablonovitch. Inhibited spontaneous emission in solid-state physics and electronics [J]. Phys. Rev. Lett., 1987, 58(20):2059~2062

【2】S. John. Strong localization of photons in certain disordered dielectric superlattices [J]. Phys. Rev. Lett., 1987, 58(23):2486~2489

【3】J. C. Knight. T. A. Birks, P. St. J. Russell et al.. All-silica single-mode optical fiber with photonic crystal cladding [J]. Opt. Lett., 1996, 21(19):1547~1549

【4】T. A. Birks, J. C. Knight, P. St. J. Russell. Endlessly single-mode photonic crystal fiber [J]. Opt. Lett., 1997, 22(13):961~963

【5】J. C. Knight, J. Broeng, T. A. Birks et al.. Photonic band gap guidance in optical fibers [J]. Science, 1998, 282(5393):1476~1478

【6】J. C. Knight. Photonic crystal fibres [J]. Nature, 2003, 424(6950):847~851

【7】P. Russell. Photonic crystal fibers [J]. Science, 2003, 299(5605):358~362

【8】J. C. Knight, J. Arriaga, T. A. Birks et al.. Anomalous dispersion in photonic crystal fiber [J]. IEEE Photon. Technol. Lett., 2000, 12(7):807~809

【9】Yanfeng Li, Bowen Liu, Zihan Wang et al.. Influence on photonic crystal fiber dispersion of the size of air holes in different rings within the cladding [J]. Chin. Opt. Lett., 2004, 2(2):75~77

【10】N. G. R. Broderick, T. M. Monro, P. J. Bennett et al.. Nonlinearity in holey optical fibers: measurement and future opportunities [J]. Opt. Lett., 1999, 24(20):1395~1397

【11】T. P. Hansen, J. Broeng, S. E. B. Libori et al.. Highly birefringent index-guiding photonic crystal fibers [J]. IEEE Photon. Technol. Lett., 2001, 13(6):588~590

【12】A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth et al.. Highly birefringent photonic crystal fibers [J]. Opt. Lett., 2000, 25(18):1325~1327

【13】Lou Shuqin, Wang Zhi, Ren Guobin et al.. Highly birefringent index guiding photonic crystal fibers [J]. Acta Optica Sinica, 2004, 24(10):1310~1315
娄淑琴,王智, 任国斌 等. 折射率导模高双折射光子晶体光纤[J]. 光学学报, 2004, 24(10):1310~1315

【14】D. A. Akimov, M. Schmitt, R. Maksimenka et al.. Supercontinuum generation in a multiple-submicron-core microstructure fiber: toward limiting waveguide enhancement of nonlinear-optical processes [J]. Appl. Phys. B, 2003, 77(2-3):299~305

【15】M. L. Hu, C. Y. Wang, Y. F. Li et al.. Multiplex frequency conversion of unamplified 30-fs Ti:sapphire laser pulses by an array of waveguiding wires in a random-hole microstructure fiber [J]. Opt. Express, 2004, 12(25):6129~6134

【16】P. Kaiser, H. W. Astle. Low-loss single-material fibers made from pure fused silica [J]. The Bell System Technical Journal, 1974, 53(6):1021~1039

【17】V. Kumar, A. K. George, W. H. Reeves et al.. Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation [J]. Opt. Express, 2002, 10(25):1520~1525

【18】M. A. van Eijkelenborg, M. C. J. Large, A. Argyros et al.. Microstructured polymer optical fibre [J]. Opt. Express, 2001, 9(7):319~327

【19】B. Temelkuran, S. D. Hart, G. Benoit et al.. Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission [J]. Nature, 2002, 420(6916):650~653

【20】P. Falkenstein, C. D. Merritt, B. L. Justus. Fused preforms for the fabrication of photonic crystal fibers [J]. Opt. Lett., 2004, 29(16):1858~1860

【21】W. J. Wadsworth, R. M. Percival, G. Bouwmans et al.. Very high numerical aperture fibers [J]. IEEE Photon. Technol. Lett., 2004, 16(3):843~845

【22】A. Argyros, I. M. Bassett, M. A. van Eijkelenborg et al.. Analysis of ring-structured Bragg fibres for single TE mode guidance [J]. Opt. Express, 2004, 12(12):2688~2698

【23】K. Tajima, J. Zhou, Ultra low loss and long length photonic crystal fiber [J]. IEICE Trans. Electron., 2005, E88C(5):870~875

【24】K. Tajima, J. Zhou, K. Nakajima et al.. Ultralow loss and long length photonic crystal fiber [J]. J. Lightwave Technol., 2004, 22(1):7~10

【25】J. Zhou, K. Tajima, K. Nakajima et al.. Progress on low loss photonic crystal fibers [J]. Opt. Fiber Technol., 2005, 11(2):101~110

【26】P. J. Roberts, F. Couny, H. Sabert et al.. Ultimate low loss of hollow-core photonic crystal fibres [J]. Opt. Express, 2005, 13(1):236~244

【27】T. M. Monro, P. J. Bennett, N. G. R. Broderick et al.. Holey fibers with random cladding distributions [J]. Opt. Lett., 2000, 25(4):206~208

【28】F. Benabid, J. C. Knight, G. Antonopoulos et al.. Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber [J]. Science, 2002, 298(5592):399~402

【29】F. Benabid, G. Bouwmans, J. C. Knight et al.. Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen [J]. Phys. Rev. Lett., 2004, 93(12):123903-1~123903-4

【30】G. P. Agrawal. Nonlinear Fiber Optics [M]. Third Edition, ed. P. L. Kelley, I. P. Kaminow, G. P. Agrawal. Academic Press, 2001

【31】S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth et al.. Supercontinuum generation in submicron fibre waveguides [J]. Opt. Express, 2004, 12(13):2864~2869

【32】H. Hundertmark, D. Kracht, D. Wandt et al.. Supercontinuum generation with 200 pJ laser pulses in an extruded SF6 fiber at 1560 nm [J]. Opt. Express, 2003, 11(24):3196~3201

【33】K. L. Corwin, N. R. Newbury, J. M. Dudley et al.. Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber [J]. Appl. Phys. B, 2003, 77(2-3):269~277

【34】A. Apolonski, B. Povazay, A. Unterhuber et al.. Spectral shaping of supercontinuum in a cobweb photonic-crystal fiber with sub-20-fs pulses [J]. J. Opt. Soc. Am. B, 2002, 19(9):2165~2170

【35】S. Coen, A. H. L. Chau, R. Leonhardt et al.. White-light supercontinuum generation with 60-ps pump pulses in a photonic crystal fiber [J]. Opt. Lett., 2001, 26(17):1356~1358

【36】J. K. Ranka, R. S. Windeler, A. J. Stentz. Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm [J]. Opt. Lett., 2000, 25(1):25~27

【37】D. J. Jones, S. A. Diddams, J. K. Ranka et al.. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis [J]. Science, 2000, 288(5466):635~639

【38】S. A. Diddams, D. J. Jones, J. Ye et al.. Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb [J]. Phys. Rev. Lett., 2000, 84(22):5102~5105

【39】B. Povazay, K. Bizheva, B. Hermann et al.. Enhanced visualization of choroidal vessels using ultrahigh resolution ophthalmic OCT at 1050 nm [J]. Opt. Express, 2003, 11(17):1980~1986

【40】Y. M. Wang, Y. H. Zhao, J. S. Nelson et al.. Ultrahigh-resolution optical coherence tomography by broadband continuum generation from a photonic crystal fiber [J]. Opt. Lett., 2003, 28(3):182~184

【41】B. Povazay, K. Bizheva, A. Unterhuber et al.. Submicrometer axial resolution optical coherence tomography [J]. Opt. Lett., 2002, 27(20):1800~1802

【42】A. L. Gaeta. Nonlinear propagation and continuum generation in microstructured optical fibers [J]. Opt. Lett., 2002, 27(11):924~926

【43】J. Herrmann, U. Griebner, N. Zhavoronkov et al.. Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers [J]. Phys. Rev. Lett., 2002, 88(17):173901-1~173901-4

【44】A. V. Husakou, J. Herrmann. Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers [J]. Phys. Rev. Lett., 2001, 87(20):203901-1~203901-4

【45】X. Gu, M. Kimmel, A. P. Shreenath et al.. Experimental studies of the coherence of microstructure-fiber supercontinuum [J]. Opt. Express, 2003, 11(21):2697~2703

【46】K. L. Corwin, N. R. Newbury, J. M. Dudley et al.. Fundamental noise limitations to supercontinuum generation in microstructure fiber [J]. Phys. Rev. Lett., 2003, 90(11):113904-1~113904-4

【47】N. R. Newbury, B. R. Washburn, K. L. Corwin et al.. Noise amplification during supercontinuum generation in microstructure fiber [J]. Opt. Lett., 2003, 28(11):944~946

【48】J. M. Dudley, S. Coen. Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers [J]. Opt. Lett., 2002, 27(13):1180~1182

【49】J. M. Dudley, S. Coen. Fundamental limits to few-cycle pulse generation from compression of supercontinuum spectra generated in photonic crystal fiber [J]. Opt. Express, 2004, 12(11):2423~2428

【50】J. K. Ranka, R. S. Windeler, A. J. Stentz. Optical properties of high-delta air-silica microstructure optical fibers [J]. Opt. Lett., 2000, 25(11):796~798

【51】F. G. Omenetto, A. J. Taylor, M. D. Moores et al.. Simultaneous generation of spectrally distinct third harmonics in a photonic crystal fiber [J]. Opt. Lett., 2001, 26(15):1158~1160

【52】F. G. Omenetto, A. Efimov, A. J. Taylor et al.. Polarization dependent harmonic generation in microstructured fibers [J]. Opt. Express, 2003, 11(1):61~67

【53】A. Efimov, A. J. Taylor, F. G. Omenetto et al.. Phase-matched third harmonic generation in microstructured fibers [J]. Opt. Express, 2003, 11(20):2567~2576

【54】A. Efimov, A. J. Taylor. Nonlinear generation of very high-order UV modes in microstructured fibers [J]. Opt. Express, 2003, 11(8):910~918

【55】D. A. Akimov, E. E. Serebryannikov, A. M. Zheltikov et al.. Efficient anti-Stokes generation through phase-matched four-wave mixing in higher-order modes of a microstructure fiber [J]. Opt. Lett., 2003, 28(20):1948~1950

【56】S. O. Konorov, E. E. Serebryannikov, P. Zhou et al.. Mode-controlled spectral transformation of femtosecond laser pulses in microstructure fibers [J]. Laser Phys. Lett., 2004, 1(4):199~204

【57】M. Hu, C.-Y. Wang, Y. Li et al.. An anti-Stokes-shifted doublet of guided modes in a photonic-crystal fiber selectively generated and controlled with orthogonal polarizations of the pump field [J]. Appl. Phys. B, 2004, 79(7):805~809

【58】Ming-Lie Hu, Ching-Yue Wang, Yan-Feng Li et al.. Polarization- and mode-dependent anti-Stokes emission in a birefringent microstructure fiber [J]. IEEE Photon. Technol. Lett., 2005, 17(3):630~632

【59】M. L. Hu, C. Y. Wang, L. Chai et al.. Frequency-tunable anti-Stokes line emission by eigenmodes of a birefringent microstructure fiber [J]. Opt. Express, 2004, 12(9):1932~1937

【60】M. L. Hu, C. Y. Wang, Y. F. Li et al.. Polarization-demultiplexed two-color frequency conversion of femtosecond pulses in birefringent photonic-crystal fibers [J]. Opt. Express, 2005, 13(16):5947~5952

【61】E. E. Serebryannikov, M. L. Hu, Y. F. Li et al.. Enhanced soliton self-frequency shift of ultrashort light pulses [J]. JETP Lett., 2005, 81(10):487~490

【62】W. J. Wadsworth, J. C. Knight, A. Ortigosa-Blanch et al.. Soliton effects in photonic crystal fibres at 850 nm [J]. Electron. Lett., 2000, 36(1):53~55

【63】X. Liu, C. Xu, W. H. Knox et al.. Soliton self-frequency shift in a short tapered air-silica microstructure fiber [J]. Opt. Lett., 2001, 26(6):358~360

【64】D. G. Ouzounov, F. R. Ahmad, D. Müller et al.. Generation of megawatt optical solitons in hollow-core photonic band-gap fibers [J]. Science, 2003, 301(5640):1702~1704

【65】G. Q. Chang, T. B. Norris, H. G. Winful. Optimization of supercontinuum generation in photonic crystal fibers for pulse compression [J]. Opt. Lett., 2003, 28(7):546~548

【66】T. Sudmeyer, F. Brunner, E. Innerhofer et al.. Nonlinear femtosecond pulse compression at high average power levels by use of a large-mode-area holey fiber [J]. Opt. Lett., 2003, 28(20):1951~1953

【67】G. McConnell, E. Riis. Ultra-short pulse compression using photonic crystal fibre [J]. Appl. Phys. B, 2004, 78(5):557~563

【68】S. Lako, J. Seres, P. Apai et al.. Pulse compression of nanojoule pulses in the visible using microstructure optical fiber and dispersion compensation [J]. Appl. Phys. B, 2003, 76(3):267~275

【69】M. Adachi, K. Yamane, R. Morita et al.. Pulse compression using direct feedback of the spectral phase from photonic crystal fiber output without the need for the Taylor expansion method [J]. IEEE Photon. Technol. Lett., 2004, 16(8):1951~1953

【70】B. Schenkel, R. Paschotta, U. Keller. Pulse compression with supercontinuum generation in microstructure fibers [J]. J. Opt. Soc. Am. B, 2005, 22(3):687~693

【71】N. Nishizawa, Y. Ito, T. Goto. Wavelength-tunable femtosecond soliton pulse generation for wavelengths of 0.78~1.0 μm using photonic crystal fibers and a ultrashort fiber laser [J]. Jpn. J. Appl. Phys., 2003, 42(Part 1, 2A):449~452

【72】W. Gobel, A. Nimmerjahn, F. Helmchen. Distortion-free delivery of nanojoule femtosecond pulses from a Ti:sapphire laser through a hollow-core photonic crystal fiber [J]. Opt. Lett., 2004, 29(11):1285~1287

【73】K. S. Abedin, F. Kubota. Widely tunable femtosecond soliton pulse generation at a 10-GHz repetition rate by use of the soliton self-frequency shift in photonic crystal fiber [J]. Opt. Lett., 2003, 28(19):1760~1762

【74】W. J. Wadsworth, N. Joly, J. C. Knight et al.. Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres [J]. Opt. Express, 2004, 12(2):299~309

【75】J. R. Folkenberg, M. D. Nielsen, N. A. Mortensen et al.. Polarization maintaining large mode area photonic crystal fiber [J]. Opt. Express, 2004, 12(5):956~960

【76】N. A. Mortensen, M. D. Nielsen, J. R. Folkenberg et al.. Improved large-mode-area endlessly single-mode photonic crystal fibers [J]. Opt. Lett., 2003, 28(6):393~395

【77】D. G. Ouzounov, K. D. Moll, M. A. Foster et al.. Delivery of nanojoule femtosecond pulses through large-core microstructured fibers [J]. Opt. Lett., 2002, 27(17):1513~1515

【78】F. Poli, A. Cucinotta, M. Fuochi et al.. Characterization of microstructured optical fibers for wideband dispersion compensation [J]. J. Opt. Soc. Am. A, 2003, 20(10):1958~1962

【79】T. A. Birks, D. Mogilevtsev, J. C. Knight et al.. Dispersion compensation using single-material fibers [J]. IEEE Photon. Technol. Lett., 1999, 11(6):674~676

【80】Yi Ni, Lei Zhang, Liang An et al.. Dual-core photonic crystal fiber for dispersion compensation [J]. IEEE Photon. Technol. Lett., 2004, 16(6):1516~1518

【81】M. L. Hu, C. Y. Wang, Y. F. Li et al.. Supercontinuum generation and transmission in a random distributed microstructure fiber [J]. Laser Phys., 2004, 14(5):776~779

【82】Hu Minglie, Wang Qingyue, Li Yanfeng et al.. Experimental analysis of the dependence factor during supercontinuum generation in photonic crystal fiber [J]. Acta Physica Sinica, 2004, 53(12):4243~4247
胡明列,王清月,栗岩锋 等. 飞秒激光在光子晶体光纤中产生超连续光谱机制的实验研究[J]. 物理学报, 2004, 53(12):4243~4247

【83】Hu Minglie, Wang Qingyue, Li Yanfeng et al.. Enhanced spectral broadening by femtosecond pulses in large-air-filling fraction microstructure fiber [J]. Chinese J. Lasers, 2004, 31(12):1429~1432
胡明列,王清月, 栗岩锋 等. 飞秒激光在大空气比微结构光纤中增强的非线性光谱展宽[J]. 中国激光, 2004, 31(12):1429~1432

【84】Hu Minglie, Wang Qingyue, Li Yanfeng et al.. Supercontinuum generation and transmission in a random distorted microstructure fiber [J]. Chinese J. Lasers, 2004, 31(5):567~569
胡明列,王清月,栗岩锋 等. 非均匀微结构光纤中超连续光的产生和传输[J]. 中国激光, 2004, 31(5):567~569

【85】F. Benabid, J. C. Knight, P. S. Russell. Particle levitation and guidance in hollow-core photonic crystal fiber [J]. Opt. Express, 2002, 10(21):1195~1203

【86】I. V. Mel’nikov, J. W. Haus, P. G. Kazansky. Vecksler-Macmillan phase stability for neutral atoms accelerated by a laser beam [J]. Opt. Commun., 2003, 220:143~150

【87】L. Michaille, C. R. Bennett, D. M. Taylor et al.. Phase locking and supermode selection in multicore photonic crystal fiber lasers with a large doped area [J]. Opt. Lett., 2005, 30(13):1668~1670

【88】A. Mafi, J. V. Moloney. Phase locking in a passive multicore photonic crystal fiber [J]. J. Opt. Soc. Am. B, 2004, 21(5):897~902

【89】L. F. Zou, X. Y. Bao, L. A. Chen. Distributed Brillouin temperature sensing in photonic crystal fiber [J]. Smart Mater. Struct., 2005, 14(3):S8~S11

【90】T. Nasilowski, T. Martynkien, G. Statkiewicz et al.. Temperature and pressure sensitivities of the highly birefringent photonic crystal fiber with core asymmetry [J]. Appl. Phys. B, 2005, 81(2-3):325~331

【91】G. Pickrell, W. Peng, A. Wang. Random-hole optical fiber evanescent-wave gas sensing [J]. Opt. Lett., 2004, 29(13):1476~1478

【92】Y. L. Hoo, W. Jin, H. L. Ho et al.. Evanescent-wave gas sensing using microstructure fiber [J]. Opt. Eng., 2002, 41(1):8~9

【93】Y. L. Hoo, W. Jin, C. Z. Shi et al.. Design and modeling of a photonic crystal fiber gas sensor [J]. Appl. Opt., 2003, 42(18):3509~3515

【94】D. J. Webb. Optical-fiber sensors: An overview [J]. MRS Bull., 2002, 27(5):365~369

【95】P. Steinvurzel, B. J. Eggleton, C. M. de Sterke et al.. Continuously tunable bandpass filtering using high-index inclusion microstructured optical fibre [J]. Electron. Lett., 2005, 41(8):463~464

【96】C. Kerbage, M. Sumetsky, B. J. Eggleton. Polarisation tuning by micro-fluidic motion in air-silica microstructured optical fibre [J]. Electron. Lett., 2002, 38(18):1015~1017

【97】C. Kerbage, P. Steinvurzel, A. Hale et al.. Microstructured optical fibre with tunable birefringence [J]. Electron. Lett., 2002, 38(7):310~312

【98】J. G. Rarity, J. Fulconis, J. Duligall et al.. Photonic crystal fiber source of correlated photon pairs [J]. Opt. Express, 2005, 13(2):534~544

【99】A. Dogariu, J. Y. Fan, L. J. Wang. Correlated photon

【100】J. Fan, A. Dogariu, L. J. Wang. Generation of correlated photon pairs in a microstructure fiber [J]. Opt. Lett., 2005, 30(12):1530~1532

【101】J. E. Sharping, J. Chen, X. Y. Li et al.. Quantum-correlated twin photons from microstructure fiber [J]. Opt. Express, 2004, 12(14):3086~3094

【102】Z. Yusoff, P. Petropoulos, K. Furusawa et al.. A 36-channel × 10-GHz spectrally sliced pulse source based on supercontinuum generation in normally dispersive highly nonlinear holey fiber [J]. IEEE Photon. Technol. Lett., 2003, 15(12):1689~1691

【103】M. A. van Eijkelenborg. Imaging with microstructured polymer fibre [J]. Opt. Express, 2004, 12(2):342~346

【104】K. Furusawa, T. Kogure, J. K. Sahu et al.. Efficient low-threshold lasers based on an erbium-doped holey fiber [J]. IEEE Photon. Technol. Lett., 2005, 17(1):25~27

【105】K. Furusawa, A. Malinowski, J. H. V. Price et al.. Cladding pumped ytterbium-doped fiber laser with holey inner and outer cladding [J]. Opt. Express, 2001, 9(13):714~720

【106】R. F. Cregan, J. C. Knight, P. St. Russell et al.. Distribution of spontaneous emission from an Er3+-doped photonic crystal fiber [J]. J. Lightwave Technol., 1999, 17(11):2138~2141

【107】G. Bouwmans, R. M. Percival, W. J. Wadsworth et al.. High-power Er:Yb fiber laser with very high numerical aperture pump-cladding waveguide [J]. Appl. Phys. Lett., 2003, 83(5):817~818

【108】J. Limpert, N. Deguil-Robin, S. Petit et al.. High power Q-switched Yb-doped photonic crystal fiber laser producing sub-10 ns pulses [J]. Appl. Phys. B, 2005, 81(1):19~21

【109】J. Limpert, N. D. Robin, I. Manek-Honninger et al.. High-power rod-type photonic crystal fiber laser [J]. Opt. Express, 2005, 13(4):1055~1058

【110】J. Limpert, T. Schreiber, A. Liem et al.. Thermo-optical properties of air-clad photonic crystal fiber lasers in high power operation [J]. Opt. Express, 2003, 11(22):2982~2990

【111】J. Limpert, T. Schreiber, S. Nolte et al.. High-power air-clad large-mode-area photonic crystal fiber laser [J]. Opt. Express, 2003, 11(7):818~823

【112】G. Bonati, H. Voelckel, T. Gabler et al.. 1.53 kW from a single Yb-doped photonic crystal fiber laser [C]. in Photonics West. 2005, San Jose

【113】M. Moenster, P. Glas, G. Steinmeyer et al.. Femtosecond neodymium-doped microstructure fiber laser [J]. Opt. Express, 2005, 13(21):8671~8677

【114】R. Holzwarth, Th. Udem, T. W. Hnsch et al.. Optical frequency synthesizer for precision spectroscopy [J]. Phys. Rev. Lett., 2000, 85(11):2264~2267

【115】R. Holzwarth, A. Yu. Nevsky, M. Zimmermann et al.. Absolute frequency measurement of iodine lines with a femtosecond optical synthesizer [J]. Appl. Phys. B, 2001, 73(3):269~271

引用该论文

王清月,胡明列,柴路. Progress in Nonlinear Optics with Photonic Crystal Fibers[J]. Chinese Journal of Lasers, 2006, 33(1): 57-66

王清月,胡明列,柴路. 光子晶体光纤非线性光学研究新进展[J]. 中国激光, 2006, 33(1): 57-66

被引情况

【1】王韩毅,任立勇,张亚妮,姚保利,赵卫. 单偏振单模微结构聚合物光纤的设计. 中国激光, 2007, 34(5): 684-687

【2】徐玲玲,金龙,开桂云,张键,刘艳格,袁树忠,董孝义. 利用倾斜光纤光栅的可开关双波长光纤激光器. 光学学报, 2007, 27(9): 1658-1662

【3】刘璟,郑志强,冯卓宏,黄志高. 二维异质结光子晶体中含近邻点缺陷的弯曲波导的可调谐滤波特性. 光学学报, 2007, 27(11): 2034-2037

【4】王清月,胡明列,宋有建,刘庆文,刘博文,张弛,李毅,柴路. 用大模场光子晶体光纤获得高功率飞秒激光. 中国激光, 2007, 34(12): 1603-1606

【5】王红华,薛文瑞,张文梅. 双芯复合格点光子晶体光纤的负色散特性. 光学学报, 2008, 28(1): 27-30

【6】王伟,竺子民. 光子晶体光纤分析及其在超连续谱中的应用. 红外与激光工程, 2007, 36(5): 684-688

【7】孙婷婷,开桂云,王志,袁树忠,董孝义. 利用掺锗方法进一步增强光子晶体光纤的非线性特性. Chinese Optics Letters, 2008, 6(2): 93-95

【8】邓洪有,饶云江,冉曾令,廖弦,刘为俊. 用157 nm激光制作的光子晶体光纤法布里珀罗传感器. 光学学报, 2008, 28(2): 255-258

【9】吴铭,刘海荣,黄德修. 高非线性光子晶体光纤色散特性的研究. 光学学报, 2008, 28(3): 539-542

【10】张虎,杨伯君,王秋国. 空芯光子带隙光纤纤芯-包层交界面的设计. 光学学报, 2008, 28(3): 543-548

【11】胡婕,陈鹤鸣. 光子晶体太赫兹波导的损耗特性. 中国激光, 2008, 35(4): 567-572

【12】项元江,唐志祥,文双春,戴小玉. 基于人工介质的低通空间滤波器. 中国激光, 2008, 35(s1): 85-89

【13】欧阳春梅,柴路,宋有建,胡明列,王清月. 基于全固型掺镱光子带隙光纤的被动锁模全光纤环形孤子激光器. 中国激光, 2008, 35(5): 647-650

【14】宋有建,胡明列,张弛,刘博文,柴路,王清月. 呼吸脉冲锁模的光子晶体光纤飞秒激光器. 中国激光, 2008, 35(6): 830-834

【15】姚宇宏,栗岩锋,刘博文,胡明列,柴路,王清月,童维军,罗杰. 基于图像处理的频域有限差分法用于实际光子晶体光纤的研究. 光学学报, 2008, 28(7): 1384-1389

【16】欧阳春梅,柴路,胡明列,宋有建,王清月. 全负色散的单根全固型掺镱光子带隙光纤飞秒孤子激光器. 中国激光, 2008, 35(10): 1445-1448

【17】狄建科,周明,杨海峰,孔俊杰,戴娟. 飞秒激光双光子制造生物微器件微支架. 中国激光, 2009, 36(1): 249-254

【18】程同蕾,柴路,栗岩锋,宋振明,李曙光,胡明列,王清月. 具有高非线性和大有效模场面积的多固体芯集束型光子晶体光纤. 中国激光, 2009, 36(3): 658-662

【19】胡明列,宋有建,刘博文,方晓惠,张弛,刘华刚,刘丰,王昌雷,柴路,邢岐荣,王清月. 光子晶体光纤飞秒激光技术研究进展及其前沿应用. 中国激光, 2009, 36(7): 1660-1670

【20】张鑫,胡明列,宋有建,柴路,王清月. 大模场面积光子晶体光纤激光器展宽脉冲锁模域的束缚态运转. 光学学报, 2009, 29(8): 2243-2247

【21】付广伟,毕卫红,金娃. 待熔光子晶体光纤中的热传导特性. 中国激光, 2009, 36(9): 2372-2379

【22】付广伟,毕卫红,金娃. 光子晶体光纤熔接过程中的空气孔力学特性. 中国激光, 2009, 36(11): 2966-2971

【23】王思佳,张玉颖,胡明列,刘博文,李毅,王清月. 频域干涉法测量光子晶体光纤的色散特性. 中国激光, 2010, 37(1): 215-219

【24】陈子伦,侯静,姜宗福. 光子晶体光纤的后处理技术. 激光与光电子学进展, 2010, 47(2): 20602--1

【25】郭铁英,娄淑琴,李宏雷,王立文,陈卫国. 两种光子晶体光纤之间的熔接及损耗分析. 光学学报, 2009, 29(s2): 129-133

【26】汤炳书,沈廷根,王刚. C6v对称TIR-PCF结构参量对基模非线性系数的影响数值研究. 光子学报, 2009, 38(6): 1438-1441

【27】陈春英,张景贵,文建国,文双春. 噪音对飞秒脉冲在光子晶体光纤中传输特性的影响. 光子学报, 2009, 38(8): 1981-1985

【28】李爱萍,刘成周,王安全. 高阶效应对微结构光纤中超连续谱产生的影响. 量子电子学报, 2009, 26(5): 596-601

【29】方晓惠,王清月,刘俊杰,刘博文,栗岩锋,柴路,胡明列. 3.95 W高功率超连续光谱产生的实验研究. 中国激光, 2010, 37(6): 1585-1588

【30】李铭佳,石志东,林建强,葛泉. 矩形晶格双折射多孔光纤宽带稳定拍长的优化设计. 光学学报, 2010, 30(7): 1950-1954

【31】崔俊红,丁晖,李仙丽,董少飞,杨乐. 基于空芯光子晶体光纤气体吸收腔的乙炔检测系统. 光学学报, 2010, 30(8): 2262-2266

【32】谌鸿伟,陈胜平,侯静. 国产光子晶体光纤实现4.6 W全光纤超连续谱输出. 光学学报, 2010, 30(9): 2541-2543

【33】王思佳,胡明列,方晓惠,张玉颖,宋有建,柴路,王清月. 紧凑型高功率超连续光源的实验研究. 中国激光, 2010, 37(S1): 208-212

【34】孙桂林,陈子伦,奚小明,侯静,姜宗福. 一种实现矩形光源与光纤高效耦合的方法. 光学学报, 2010, 30(12): 3403-3407

【35】励强华,高社成,张剑. 用等效经验关系法研究光子晶体光纤的非线性. 中国激光, 2011, 38(1): 105002--1

【36】汤炳书,秦家千,沈廷根. C6v TIR-PCF基模有效面积数值研究. 光通信研究, 2007, 33(3): 45-47

【37】王旭颖,贾维国,尹建全,通拉嘎,门克内木乐,杨军,张俊萍. 光子晶体光纤中的参变放大与拉曼散射. 光学学报, 2011, 31(6): 606001--1

【38】崔亮,李小英,赵宁波. 利用自发四波混频测量光子晶体光纤色散. 光学学报, 2012, 32(1): 119002--1

【39】钱程,王思佳,顾澄琳,张丽梦,刘博文,庞冬青,胡明列,柴路,王清月. 利用快速相位反馈控制输出变换极限飞秒激光脉冲. 中国激光, 2012, 39(11): 1102003--1

【40】柴路,胡明列,方晓惠,刘博文,宋有建,栗岩锋,王清月. 光子晶体光纤飞秒激光技术研究进展. 中国激光, 2013, 40(1): 101001--1

【41】曹凤珍,张培晴,戴世勋,王训四,徐铁峰,聂秋华. 高非线性硫系玻璃光子晶体光纤研究进展. 激光与光电子学进展, 2013, 50(6): 60003--1

【42】王小建,杨四刚,陈宏伟,陈明华,谢世钟. 基于光子晶体光纤的1 μm波段参量放大器. 光学学报, 2013, 33(9): 906007--1

【43】张巨慧,胡明列,刘博文,柴路,王清月. 耗散孤子脉冲的放大和超连续光谱的产生. 中国激光, 2014, 41(4): 405003--1

【44】李梦龙,蒙裴贝,颜凡江,史文宗,冯文,罗萍萍. 高重频被动调Q固体激光器研究进展. 激光与光电子学进展, 2015, 52(9): 90001--1

【45】韦远飞,赵福利,沈鹏高,吴仕强. 光子晶体光纤产生飞秒超连续谱的实验研究. 光谱学与光谱分析, 2015, 35(12): 3283-3286

【46】张 峰,张海鹍,陈 涛,宋 朋,周 城. 掺钕双包层大模场保偏光子晶体光纤激光器. 中国激光, 2017, 44(2): 201020--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF