首页 > 论文 > 光学学报 > 34卷 > 9期(pp:0924001--1)

基于表面等离激元光镊的新型纳米热源研究

Study on Novel Nano-Heating Source Based on Plasmonic Nanotweezers

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对纳米尺度热现象研究的需求,基于表面等离激元光镊对金纳米颗粒的动态操控能力,设计了一种实时、动态、可控的纳米热源。利用有限元法对光镊系统中金纳米颗粒的光热效应与表面等离激元电磁场强度的关系进行了模拟,阐明了由于表面等离激元和局域表面等离激元的耦合作用导致的电磁场能量聚集和增强,以及同时实现的金属纳米颗粒的光热效应;分析了在该光镊系统捕获金属颗粒过程中颗粒所产生的热效应,并由此得到了实时控制纳米热源热功率的方法。在理论研究的基础上设计实验并证实了该光镊系统中金纳米颗粒基于光热效应的加热能力。结合表面等离激元光镊系统对纳米热源的精确定位操控能力,该系统为纳米尺度热现象的研究提供了灵活而可靠的手段。

Abstract

To meet demands of researches on nanoscale photothermal effect, a real-time dynamic controllable nano-heating source is demonstrated, which is based on the robust dynamic manipulation of gold nanoparticles by plasmonic nanotweezers. Based on finite element method, the relationship between photothermal effect of gold nanoparticles and the strength of surface plasmon polariton electromagnetic field is elaborated by numerical simulations. The confinement and enhancement of electromagnetic field induced by hybridization of surface plasmon polariton and localized surface plasmon polariton with the nanotweezer system is explained and then the photothermal effect during the progress of nanoparticle capturing are analyzed. Further, the methods to real-time control of its power are delivered. To validate the heating ability of gold nanoparticles in the plasmonic nanotweezers, experiments are implemented. Integrated with plasmonic nanotweezers, the precise manipulation of metal nano-heating source supports a reliable and flexible method for the research of nanoscale thermal effect.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O436.2

DOI:10.3788/aos201434.0924001

所属栏目:表面光学

基金项目:国家自然科学基金重点项目(61138003,61036013)、国家自然科学基金青年项目(11204141)、国家自然科学基金面上项目(61377052)、天津市科委重点项目(11JCZDJC15200,12JCYBJC31000)、教育部博士点基金(20130031110036)

收稿日期:2014-03-10

修改稿日期:2014-05-05

网络出版日期:--

作者单位    点击查看

沈军峰:南开大学电子信息与光学工程学院现代光学研究所, 天津 300071
张翠娇:南开大学电子信息与光学工程学院现代光学研究所, 天津 300071
张聿全:南开大学电子信息与光学工程学院现代光学研究所, 天津 300071
王健:南开大学电子信息与光学工程学院现代光学研究所, 天津 300071
方晖:南开大学电子信息与光学工程学院现代光学研究所, 天津 300071
闵长俊:南开大学电子信息与光学工程学院现代光学研究所, 天津 300071
袁小聪:深圳大学光电工程学院微纳光学研究所, 广东 深圳 518060

联系人作者:沈军峰(junfengs@126.com)

备注:沈军峰(1984—),男,博士研究生,主要从事表面等离激元方面的研究。

【1】Y Wang, E W Plummer, K Kempa. Foundations of plasmonics [J]. Advances in Physics, 2011, 60(5): 799-898.

【2】Peng Yang, Hou Jing, Huang Zhihe, et al.. Using surface plasmon resonance to control the reflection index of mirror [J]. Acta Optica Sinica, 2012, 32(1): 0124001.
彭杨, 侯静, 黄值河, 等. 表面等离子体共振控制镜面反射率[J]. 光学学报, 2012, 32(1): 0124001.

【3】Zhang Xiaoyang, Zhang Tong, Hu A, et al.. Controllable plasmonic antennas with ultra narrow bandwidth based on silver nano-flags [J]. Appl Phys Lett, 2012, 101(15): 153118.

【4】Luo Tingjun, Wan Lingyu, Huang Jiqin, et al.. Shape optimization and analysis of sensing porperties of localized surface plasmon resonances for triangle metal nanoparticles [J]. Acta Optica Sinica, 2013, 33(5): 0524002.
罗庭军, 万玲玉, 黄继钦, 等. 三角形金属纳米结构的局域表面等离共振传感特性与优化分析[J]. 光学学报, 2013, 33(5): 0524002.

【5】Xiaoyang Zhang, Anming Hu, Tong Zhang, et al.. Self-assembly of large-scale and ultrathin silver nanoplate films with tunable plasmon resonance properties [J]. ACS Nano, 2011, 5(11): 9082-9092.

【6】Huang Pinbo, Zou Wendong, Guo Fei, et al.. Analysis of surface plasmon polaritons standing wave field induced by interference Gaussian beams [J]. Acta Optica Sinica, 2011, 31(10): 1024003.
黄频波, 邹文栋, 郭斐, 等. 干涉高斯光诱导的表面等离子激元驻波场的分析[J]. 光学学报, 2011, 31(10): 1024003.

【7】Zhang Shuang, Genov Dentcho A, Wang Yuan, et al.. Plasmon-induced transparency in metamaterials [J]. Phys Rev Lett, 2008, 101(4): 47401.

【8】Du Luping, Lei Dangyuan, Yuan Guanghui, et al.. Mapping plasmonic near-field profiles and interferences by surface-enhanced Raman scattering [J]. Scientific Reports, 2013, 3: 3064.

【9】K J Moh, X C Yuan, J Bu, et al.. Radial polarization induced surface plasmon virtual probe for two-photon fluorescence microscopy [J]. Opt Lett, 2009, 34(7): 971-973.

【10】Wang Yijia, Zhang Chonglei, Wang Rong, et al.. Extracting phase information of surface plsmon resonance imaging system [J]. Acta Optica Sinica, 2013, 33(5): 0524001.
王弋嘉, 张崇磊, 王蓉, 等. 表面等离子体共振成像系统相位提取[J]. 光学学报, 2013, 33(5): 0524001.

【11】M E Stewart, C R Anderton, L B Thompson, et al.. Nanostructured plasmonic sensors [J]. Chemical Reviews, 2008, 108(2): 494-521.

【12】Xiong Xiang, Jiang Shangchi, Hu Yuhui, et al.. Structured metal film as a perfect absorber [J]. Advanced Materials, 2013, 25(29): 3994-4000.

【13】Xi Chen, Yiting Chen, Min Yan, et al.. Nanosecond photothermal effects in plasmonic nanostructures [J]. ACS Nano, 2012, 6(3): 2550-2557.

【14】O Govorov Alexander, H Richardson Hugh. Generating heat with metal nanoparticles [J]. Nano Today, 2007, 2(1): 30-38.

【15】Wang Kai, Schonbrun Ethan, Steinvurzel Paul, et al.. Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink [J]. Nature Communications, 2011, 2: 469.

【16】Fang Zheyu, Zhen Yurong, Neumann Oara, et al.. Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle [J]. Nano Letters, 2013, 13(4): 1736-1742.

【17】O′Neal D Patrick, Hirsch Leon R, Halas Naomi J, et al.. Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles [J]. Cancer Letters, 2004, 209(2): 171-176.

【18】I Elsayed, X Huang, M Elsayed. Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles [J]. Cancer Letters, 2006, 239(1): 129-135.

【19】Righini Maurizio, Volpe Giovanni, Girard Christian, et al.. Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range [J]. Phys Rev Lett, 2008, 100(18): 186804.

【20】Volpe Giovanni, Quidant Romain, Badenes Gonal, et al.. Surface plasmon radiation forces [J]. Phys Rev Lett, 2006, 96(23): 238101.

【21】Zhang Bingxin, Chen Shufen, Fu Lei, et al.. Dynamic patterning of microparticles via surface plasmon excitation [J]. Chinese J Lasers, 2012, 39(6): 0610001.
张兵心, 陈淑芬, 付雷, 等. 基于表面等离子体激发的光学操控技术[J]. 中国激光, 2012, 39(6): 0610001.

【22】H Raether. Surface Plasmons on Smooth and Rough Surfaces and on Gratings [M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. 1-11.

【23】Min Changjun, Shen Zhe, Shen Junfeng, et al.. Focused plasmonic trapping of metallic particles [J]. Nature Communications, 2013, 4: 2891.

【24】Shen Junfeng, Wang Jian, Zhang Cuijiao, et al.. Dynamic plasmonic tweezers enabled single-particle-film-system gap-mode surface-enhanced Raman scattering [J]. Appl Phys Lett, 2013, 103(19): 191119.

【25】Guo Lijiao, Min Changjun, Wei Shibiao, et al.. Polarization and amplitude hybrid modulation of longitudinally polarized subwavelength-sized optical needle [J]. Chin Opt Lett, 2013, 11(5): 052601.

【26】Zhan Qiwen. Evanescent Bessel beam generation via surface plasmon resonance excitation by a radially polarized beam [J]. Opt Lett, 2006, 31(11): 1726-1728.

【27】Chen Weibin, Zhan Qiwen. Realization of an evanescent Bessel beam via surface plasmon interference excited by a radially polarized beam [J]. Opt Lett, 2009, 34(6): 722-724.

【28】E Wolf. Electromagnetic diffraction in optical systems. I. an integral representation of the image field [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1959, 253(1274): 349-357.

【29】B Richards, E Wolf. Electromagnetic diffraction in optical systems. II. structure of the image field in an aplanatic system [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1959, 253(1274): 358-379.

【30】K S Brown, T G Youngworth. Focusing of high numerical aperture cylindrical-vector beams [J]. Opt Express, 2000, 7(2): 77-87.

【31】Abajo Guillaume Baffou, Romain Quidant, F Javier Garcíade. Nanoscale control of optical heating in complex plasmonic systems [J]. ACS Nano, 2010, 4(2): 709-716.

【32】Kawata Satoshi. Near-Field Optics and Surface Plasmon Polaritons [M]. Berlin: Springer, 2001. 105-109.

【33】T Hill Ryan, J Mock Jack, Urzhumov Yaroslav, et al.. Leveraging nanoscale plasmonic modes to achieve reproducible enhancement of light [J]. Nano Letters, 2010, 10(10): 4150-4154.

引用该论文

Shen Junfeng,Zhang Cuijiao,Zhang Yuquan,Wang Jian,Fang Hui,Min Changjun,Yuan Xiaocong. Study on Novel Nano-Heating Source Based on Plasmonic Nanotweezers[J]. Acta Optica Sinica, 2014, 34(9): 0924001

沈军峰,张翠娇,张聿全,王健,方晖,闵长俊,袁小聪. 基于表面等离激元光镊的新型纳米热源研究[J]. 光学学报, 2014, 34(9): 0924001

被引情况

【1】王玥,王暄,李龙威. 基于表面等离激元薄膜太阳能电池陷光特性的研究. 激光与光电子学进展, 2015, 52(9): 92401--1

【2】翟利,薛文瑞,杨荣草,韩丽萍. 涂覆石墨烯的电介质纳米并行线的传输特性. 光学学报, 2015, 35(11): 1123002--1

【3】吴仍来,全军,阳喜元,肖世发,薛红杰. 一维体系等离激元的偶极和四极模式的激发与调控特性. 激光与光电子学进展, 2018, 55(7): 72501--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF