首页 > 论文 > 中国激光 > 36卷 > 7期(pp:1605-1618)

高平均功率全固态激光器

High Average Power Laser Diode Pumped Solid-State Laser

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

综述了近年来棒状、盘片、光纤和热容等高平均功率全固态激光器的进展和国内近期的工作。围绕限制激光器输出平均功率提高和激光光束质量下降的热效应问题, 比较了各类激光器的优缺点。总结了减小或补偿无用热不利影响的现有技术手段, 指出减小激光器热效应可能的技术途径。

Abstract

Current developments of high power laser diode-pumped solid-state lasers such as disk rod laser, disk/slab laser, fiber laser and heat-capacity laser at home and abroad are investigated. Focusing on the problem of thermal effects in solid-state lasers which limits the increment of the output average power and degrades the output beam quality, the advantages and disadvantages of kinds of lasers are compared. Current techniques to decrease or compensate for the effects of the useless heat are summarized, and the probable techniques to reduce the laser′s thermal effects are pointed out.

投稿润色
补充资料

中图分类号:TN248.1

所属栏目:综述

基金项目:国家自然科学基金重大项目(60890200)和固体激光国家重点实验室基金资助课题。

收稿日期:2009-05-16

修改稿日期:2009-05-26

网络出版日期:0001-01-01

作者单位    点击查看

周寿桓:华北光电技术研究所固体激光国家级重点实验室, 北京 100015
赵鸿:华北光电技术研究所固体激光国家级重点实验室, 北京 100015
唐小军:华北光电技术研究所固体激光国家级重点实验室, 北京 100015

联系人作者:周寿桓(zfhuan@yahoo.com.cn)

备注:周寿桓(1937—), 男, 中国工程院院士, 主要从事固体激光方面的研究。

【1】Zhou Shouhuan. Solid State Laser Technology[J]. Laser & Infrared, 1994, 24(4): 18~22
周寿桓. 固体激光技术研究[J]. 激光与红外, 1994, 24(4): 18~22

【2】Zhou Shouhuan. The heat managements of the solid-state lasers [J]. Chinese J. Quantum Electronics, 2005, 22(4): 497~509
周寿桓. 固体激光器中的热管理[J]. 量子电子学报, 2005, 22(4): 497~509

【3】H. Bruesselbach, D. S. Sumida. A 2.65-kW YbYAG single-rod laser[J]. IEEE J. Sel. Top. Quantum Electron., 2005, 11(3): 600~603

【4】S. Lee, M. Yun, B. H. Cha et al.. Stability analysis of a diode-pumped, thermal birefringence-compensated two-rod Nd:YAG laser with 770-W output power[J]. Appl. Opt., 2002, 41(27): 5625~5631

【5】A. Takada, Y. Akiyama, T. Takase et al.. High-efficiency operation of diode-pumped high-power Nd:YAG rod laser[C]. SPIE, 2000, 4065: 782~789

【6】N. Pavel, Y. Hirano, S. Yamamoto et al.. Improved pump-beam distribution in a diode side-pumped solid-state laser with a highly diffuse, cross-axis beam delivery system[J]. Appl. Opt., 2000, 39(6): 986~992

【7】S. Fujikawa, K. Furuta, K. Yasui. 28% electrical-efficiency operation of a diode-side-pumped Nd:YAG rod laser[J]. Opt. Lett., 2001, 26(9): 602~604

【8】S. Konno, T. Kojima, S. Fujikawa et al.. High-brightness 138-W green laser based on an intracavity-frequency-doubled diode-side-pumped Q-switched Nd:YAG laser[J]. Opt. Lett., 2000, 25(2): 105~107

【9】Y. Akiyama, M. Sasaki, H. Yuasa et al.. Efficient 10 kW diode-pumped Nd:YAG rod laser[J]. Advanced Solid-State Lasers, 2001, 33(4): 46~49

【10】A. Parker. High-power green lasers open up precision machining[R]. Science & Technology Review(Lawrence Livermore National Laboratory), 1999, October 8~9

【11】D. J. Ripin, J. R. Ochoa, R. L. Aggarwal et al.. 165-W cryogenically cooled YbYAG laser[J]. Opt. Lett., 2004, 29(18): 2154~2156

【12】W. A. Clarkson, N. S. Felgate, D. C. Hanna. Simple method for reducing the depolarization loss resulting from thermally induced birefringence in solid-state lasers[J]. Opt. Lett., 1999, 24(12): 820~822

【13】H. Yuasa, Y. Akikama, H. Takada et al.. High-power 10-kW all-solid-state rod-type laser[J]. Review of Laser Engineering, 2003, 31(8): 508~512

【14】Y. Hirano, Y. Koyata, S. Yamamoto et al.. 208-W TEM00 operation of a diode-pumped Nd:YAG rod laser[J]. Opt. Lett., 1999, 24(10): 679~681

【15】S. Garnov, V. Mikhailov, R. Serov et al.. Study of the possibility of developing a multichannel-diode-pumped multikilowatt solid-state laser based on optically dense active media[J]. IEEE J. Quantum Electron., 2007, 37(10): 910~915

【16】C. Stewen, K. Contag, M. Larionov et al.. A 1-kW CW thin disc laser[J]. IEEE J. Sel. Top. Quantum Electron., 2000, 6(4): 650~657

【17】J. A. C. Terry, W. A. Clarkson. Solid State Laser Technologies and Femtosecond Phenomena[M]. London:Bellingham, Washington: SPIE, 2004

【18】J. Vetrovec, R. S. Shah, T. Endo et al.. Progress in the development of solid-state disk laser[C]. SPIE, 2004, 5332: 235~243

【19】J. Vetrovec, A. Koumvakalis, R. Shah. Solid state disk laser for high-average power[C]. SPIE, 2003, 5120: 731~734

【20】J. Vetrovec, A. Koumvakalis, R. D. Shah et al.. Development of solid-state disk laser for high-average power[C]. SPIE, 2003, 4968: 54~64

【21】J. Vetrovec. Ultrahigh-average power solid-state laser[C]. SPIE, 2002, 4760: 491~505

【22】A. Giesen. Thin disk lasers-power scalability and beam quality[J]. Laser Technik J., 2005, 2(2): 42~45

【23】A. Giesen. Results and scaling laws of thin-disk lasers[C]. SPIE, 2004, 5332: 212~227

【24】H. Injeyan, C. S. Hoefer, S. P. Palese. End pumped zig-zag slab laser gain medium[P]. 2001, US6, 268, 956 B1

【25】J. P. Machan, W. H. L. Jr, J. Zamel et al.. 5.4 kW diode-pumped, 2.4 × diffraction-limited Nd:YAG laser for material processing[J]. Advanced Solid-State Lasers, 2002, 68: 549~551

【26】Y. Nishikawa. Slab-shaped 10 kW all-solid-state laser[J]. Review of Laser Engineering, 2003, 31(8): 513~518

【27】T. S. Rutherford, W. M. Tulloch, S. Sinha et al.. Yb:YAG and Nd:YAG edge-pumped slab lasers[J]. Opt. Lett., 2001, 26(13): 986~988

【28】G. D. Goodno, H. Komine, S. J. McNaught et al.. Coherent combination of high-power, zigzag slab lasers[J]. Opt. Lett., 2006, 31(9): 1247~1249

【29】G. D. Goodno, S. Palese, J. Harkenrider et al.. YbYAG power oscillator with high brightness and linear polarization[J]. Opt. Lett., 2001, 26(21): 1672~1674

【30】S. Redmond, S. McNaught, J. Zamel et al.. 15 kW near-diffraction-limited single-frequency Nd:YAG laser[C]. Conference on Lasers and Electro-Optics(CLEO), 2007: 1~2

【31】J. Marmo, H. Injeyan, H. Komine et al.. Joint high power solid state laser program advancements at Northrop Grumman[C]. SPIE, 2009, 7195: 719507

【32】H. Injeyan, G. Goodno, H. Komine et al.. High power scalable Nd:YAG laser architecture[C]. Conference on Lasers and Electro-Optics(CLEO), 2005, 1165

【33】B. Bishop. Northrop Grumman Scales New Heights in Electric Laser Power, Achieves 100 Kilowatts From a Solid-State Laser[J]. http://www.irconnect.com/noc/press/pages/ news_releases html?d =161575, March 18, 2009

【34】J. Limpert, T. Schreiber, A. Liem et al.. Thermo-optical properties of air-clad photonic crystal fiber lasers in high power operation[J]. Opt. Express, 2003, 11(22): 2982~2990

【35】J. J. Larsen, G. Vienne. Side pumping of double-clad photonic crystal fibers[J]. Opt. Lett., 2004, 29(5): 436~438

【36】T. Loftus, A. Liu, P. Hoffman et al.. 258W of spectrally beam combined power with near-diffraction limited beam quality[C]. SPIE, 2006, 6102: 61020S1~S8

【37】J. Abderegg, S. J. Brosnan, M. E. Weber et al.. 8-watt coherently-phased 4-element fiber array[C]. SPIE, 2003, 4974: 1~6

【38】M. L. Minden, H. W. Bruesselbach, J. L. Rogers et al.. Self-organized coherence in fiber laser arrays[C]. SPIE, 2004, 5335: 89~97

【39】A. Shirakawa, K. Matsuo, K. Ueda. Fiber laser coherent array for power scaling of single-mode fiber laser[C]. SPIE, 2004, 5662: 482~487

【40】Y. Zhou, L. Liu, C. Etson et al.. Phase locking of a two-dimensional laser array by controlling the far-field pattern[J]. Appl. Phys. Lett., 2004, 84(16): 3025~3027

【41】A. Liu, R. Mead, T. Vatter et al.. Spectral beam combining of high-power fiber lasers[C]. SPIE, 2004, 5335: 81~88

【42】J. Limpert, T. Schreiber, A. Tünnermann. Fiber based high power laser systems[J]. http://www.rp-photonics.com/highpowerfiberlasers.pdf, 2005

【43】Y. Jeong, J. Sahu, D. Payne et al.. Ytterbium-doped large-core fibre laser with 1 kW of continuous-wave output power[J]. Electron. Lett., 2004, 40(8): 470~472

【44】IPG. IPG Photonics Achieves Record Two Kilowatt[R].2005

【45】IPG. World Premiere of Super High Power Fiber Laser at Opening of[R].2005

【46】IPG. IPG Photonics Corporation[R].2008. 11

【47】IPG. High Power Fiber Lasers for Industrial Applications[R].2009

【48】http://investor.ipgphotonics.com/releases.cfm

【49】G. Bonati, H. Voelckel, T. Gabler et al.. 1.53 kW from a single Yb-doped photonic crystal fiber laser[J]. Photonics West, San Jose, Late Breaking Developments, Session.

【50】C. B. Dane. High-average-power, solid-state laser with high pulse energy and low beam divergence[R]. Science & Technology Review(Lawrence Livermore National Laboratory), 1995, September: 3

【51】M. D. Rotter, C. B. Dane, S. Fochs et al.. Solid-state heat-capacity lasers: good candidates for the marketplace[J]. Photonics Spectra, 2004, 38(8): 44~56

【52】J. Vetrovec. Solid-state high-energy laser[C]. SPIE, 2002, 4632: 104~114

【53】R. P. Abbott, C. D. Boley, S. N. Fochs et al.. High-power solid-state laser: lethality testing and modeling[R]. Lawrence Livermore National Laboratory, 25th Army Science Conference, UCRL-CONF-224732, 2006

【54】C. B. Dane, S. Fochs, J. Gwo et al.. Solid-state heat-capacity laser for defense[R]. Laser science and technology program update 2002. Lawrence Livermore National Laboratory, UCRL-ID-134972-01, 2003: 16~18

【55】R. M. Yamamoto, J. M. Parker, K. L. Allen et al.. Evolution of a solid state laser[C]. SPIE, 2007, 6552: 655205

【56】R. M. Yamamoto, K. L. Allen, R. W. Allmon et al.. A solid state laser for the battlefield[R].Lawrence Livermore National Laboratory, 25th Army Science Conference, UCRL-CONF-225230, 2006

【57】G. Mingxiu, L. Jindong, L. Wenqiang et al.. A kilowatt diode-pumped solid-state heat-capacity double-slab laser[J]. Chin. Phys. Lett., 2006, 23(9): 2530~2533

【58】Yin Xianhua, Zhu Jianqiang, Zu Jifeng et al.. Calculation of induced refraction index in heat capacity slab laser[J]. Chinese J. Lasers, 2008, 35(2): 225~230
尹宪华, 朱健强, 祖继锋 等. 热容型板条激光器的感应折射率计算[J]. 中国激光, 2008, 35(2): 225~230

【59】Yan Xin, Wang Zhiyong, Bao Yong et al.. Novel laser drilling machine for cartridge[J]. Infrared and Laser Engineering, 2007, 36(S1): 380~383
鄢歆, 王智勇, 鲍勇 等. 新型弹壳激光打孔机的研制[J]. 红外与激光工程, 2007, 36(S1): 380~383

【60】F. Guoying, O. Qunfei, C. Jianguo et al.. Simulation of the thermal effects in diode-pumped rod laser[C]. SPIE, 2004, 5178: 43~48

【61】Li Gang, Feng Guoying, Li Wei et al.. Numerical calculation of distribution of 3D temperature and thermal stress for Nd:YAG square slice laser[J]. High Power Laser and Partical Beams, 2008, 20(4): 557~562
李刚, 冯国英, 李玮 等. Nd:YAG 方形薄片激光器3维温度及热应力的数值模拟[J]. 强激光与粒子束, 2008, 20(4): 557~562

【62】O. Qunfei, C. Jianguo, Z. Wenhui et al.. Thermal distortions of optics irradiated by periodically repeated short pulses[C]. SPIE, 2005, 6028: 562~568

【63】O. Qunfei, C. Jianguo, Z. Wenhui et al.. Phase distortions due to temperature rise of optics irradiated by periodically repeated short pulses[J]. Optics and Laser Technology, 2006, 38(8): 631~635

【64】Zhao Hong, Zhou Shouhuan, Zhu Chen et al.. High power fiber laser with out power exceeding 1.2 kW[J]. Laser & Infrared, 2006, 36(10): 930~930
赵鸿, 周寿桓, 朱辰 等. 大功率光纤激光器输出功率超过1.2 kW[J]. 激光与红外, 2006, 36(10): 930~930

【65】Wang Chao, Zhou Shouhuan, Tang Xiaojun et al.. Experimental investigation on 8.7 kW laser-diode pumped solid state heat capacity laser[J]. Infrared and Laser Engineering, 2008, 37(1): 77~78
王超, 周寿桓, 唐晓军 等. LD 泵浦 8.7 kW 固体热容激光器实验研究[J]. 红外与激光工程, 2008, 37(1): 77~78

引用该论文

Zhou Shouhuan,Zhao Hong,Tang Xiaojun. High Average Power Laser Diode Pumped Solid-State Laser[J]. Chinese Journal of Lasers, 2009, 36(7): 1605-1618

周寿桓,赵鸿,唐小军. 高平均功率全固态激光器[J]. 中国激光, 2009, 36(7): 1605-1618

被引情况

【1】邓青华,丁磊,贺少勃,唐军,谢旭东,卢振华,董一芳. 激光二极管阵列侧面抽运棒状增益介质抽运储能分布的评价方法. 中国激光, 2010, 37(5): 1176-1181

【2】王建磊,李磊,施翔春,尹亮,马秀华,朱小磊. 高功率板条放大器冷却系统模拟及优化设计. 中国激光, 2010, 37(6): 1553-1559

【3】王建磊,施翔春,朱小磊. 高效率高功率脉冲Yb:YAG片状激光器优化设计与模拟. 光学学报, 2010, 30(8): 2278-2283

【4】陈胜平,谌鸿伟,侯静,刘泽金. 30 W皮秒脉冲光纤激光器及高功率超连续谱的产生. 中国激光, 2010, 37(8): 1943-1949

【5】赵智刚,董延涛,潘孙强,刘崇,葛剑虹,项震,陈军,毛谦敏. LD双端抽运YVO4-Nd:YVO4-YVO4复合晶体的高功率调Q基模固体激光器研究. 中国激光, 2010, 37(9): 2409-2414

【6】许正,李密,李春领,王亚丽. 二极管抽运流动无机液体激光器出光实验研究. 光学学报, 2010, 30(9): 2620-2623

【7】司春强,徐洪波,唐明生,田长青. 高功率固体激光器用气助式雾化无沸腾换热性能的实验研究. 光学学报, 2010, 30(10): 2958-2962

【8】徐洪波,田长青,曹宏章,司春强. 单bar条微通道相变热沉开发及性能测试. 中国激光, 2010, 37(S1): 29-33

【9】李密,李春领,王亚丽,许正. 掺钕无机液体体系流动激光特性研究. 中国激光, 2010, 37(S1): 57-60

【10】司春强,梁楠,田长青,徐洪波. 高功率固体激光器无沸腾喷雾冷却温度均匀性实验研究. 中国激光, 2010, 37(S1): 73-76

【11】张恒利,闫莹,刘洋,李静,辛建国. 激光二极管阵列端面抽运混合腔Nd:YVO4板条1064 nm和1342 nm激光特性研究. 中国激光, 2010, 37(11): 2766-2768

【12】徐会武,任永学,安振峰,牛江丽,任浩,闫立华. 808 nm连续1500 W阵列激光器封装. 中国激光, 2010, 37(11): 2769-2773

【13】王超,唐晓军,徐鎏婧,刘磊,梁兴波,刘刚,杜涛,赵鸿,陈三斌. 输出功率11 kW的高功率固体板条激光器介质热分析. 中国激光, 2010, 37(11): 2807-2809

【14】司春强,邵双全,田长青. 高功率固体激光器用一体化制冷喷雾冷却系统实验研究. 中国激光, 2011, 38(1): 102008--1

【15】单小童,严雄伟,张雄军,郑建刚,王明哲,张永亮,於海武,李明中. 基于非均匀掺杂的激光二极管抽运固体激光系统放大介质热特性分析. 中国激光, 2011, 38(1): 102009--1

【16】李密,王亚丽,李春领,王姣,柳丽卿. 二极管抽运无机液体激光体系输出特性研究. 光学学报, 2011, 31(2): 214004--1

【17】彭钦军,许祖彦. 高平均功率固体激光功率和光束质量关系研究进展. 强激光与粒子束, 2011, 23(7): 1707-1712

【18】赵智刚,董延涛,潘孙强,刘崇,项震,陈军. 50 W量级双端抽运Nd∶YVO4基模固体激光振荡器. 中国激光, 2011, 38(9): 902001--1

【19】周寿桓,冯国英. 大口径薄片激光器中的谐振模式及光束质量诊断. 光学学报, 2011, 31(9): 900110--1

【20】李密,胡浩,李建民,李德明,赵娜,邬映臣,蒋建锋,雷军,吕文强,石勇. 千瓦级端面抽运板条激光器技术研究. 中国激光, 2011, 38(s1): 102001--1

【21】高清松,胡浩,裴正平,童立新,周唐建,唐淳. 10 kW级固体板条激光放大器设计与实验研究. 中国激光, 2012, 39(2): 202001--1

【22】张健,郭亮,张庆茂,李方志. 谐振放大结构的大功率Nd:YAG激光器设计及分析. 中国激光, 2012, 39(4): 402002--1

【23】连天虹,王石语,过振,李兵斌,林林,蔡德芳,梁兴波. 粗糙热传导表面下激光介质温度场的计算分析. 光学学报, 2012, 32(6): 614001--1

【24】雷翔,董理治,杨平,晏虎,刘文劲,王帅,许冰. 板条增益介质波前畸变诊断方法. 强激光与粒子束, 2012, 24(7): 1651-1655

【25】李密,胡浩,邬映臣,赵娜,李建民,杜应磊,雷军,石勇. 高功率板条增益模块在谐振腔内的透射波前特性实验研究. 光学学报, 2013, 33(2): 214003--1

【26】陈月健,王建东,童立新,纪红,高清松. 高功率二极管端泵浦板条模块波前畸变实验研究. 强激光与粒子束, 2013, 25(4): 822-826

【27】熊景平,李嘉强,安振杰,谈小虎,陈日升,张晓卫,张志忠. 310 W全固态准连续Nd:YAG绿光激光器. 光学学报, 2013, 33(s1): 114002--1

【28】乔红超,赵吉宾,陆莹. 纳秒脉宽Nd:YAG激光冲击强化激光器的研制及分析. 中国激光, 2013, 40(8): 802001--1

【29】杨火木,冯国英,魏泳涛,母健,王树同,王绍朋,唐淳,周寿桓. 基于热流固多物理场耦合的薄片激光器温度场研究. 中国激光, 2013, 40(9): 902004--1

【30】徐洪波,李建国,司春强,邵双全,田长青. 润滑油对基于制冷循环的喷雾冷却系统性能的影响. 强激光与粒子束, 2013, 25(10): 2551-2555

【31】冯寒亮,刘彦升,韩锋,张平. 美国海军舰载激光武器研究进展. 激光与光电子学进展, 2014, 51(2): 20004--1

【32】李静,郑轶,罗晋,陈松林,关振威,梁璐. 航空复合涂层材料的激光烧蚀效应. 强激光与粒子束, 2014, 26(2): 29003--1

【33】陈卓,薄淑晖,田昌勇,甄珍,刘新厚. 用于液体激光介质的Nd3+离子掺杂氟化镧纳米颗粒的制备与性能表征. 发光学报, 2015, 36(2): 129-134

【34】肖红,赵天卓,樊仲维,黄科,余锦. 大口径轴向非均匀Nd∶YAG晶体抽运设计. 中国激光, 2015, 42(6): 602002--1

【35】傅筱莹,杨平,何星,陈小君,董理治,许冰. 板条激光像散整形系统设计. 光学学报, 2015, 35(s2): 222003--1

【36】杨鹏,马仑,姜彦玲,李伟,聂荣志,赵朋飞,佘江波. 液冷薄片构型激光器及其热管理技术. 光子学报, 2016, 45(3): 314007--1

【37】刘旭,程勇,万强,谭朝勇,朱孟真,陈霞,魏靖松. 高温激光二极管抽运全固态激光器. 中国激光, 2016, 43(7): 701003--1

【38】李密,胡浩,唐淳,雷军,汪丹,陈小明,周唐建,李建民,吕文强,赵娜,邬映臣. 高功率双掺杂浓度板条激光技术研究. 光学学报, 2016, 36(9): 914004--1

【39】刘洋,唐晓军,王喆,吴昌洁,赵鸿,周寿桓. 激光二极管端面抽运Nd:YAG表层增益板条激光器. 中国激光, 2016, 43(10): 1001004--1

【40】刘 畅,余 锦,樊仲维. 激光二极管叠阵单侧抽运Nd∶YAG陶瓷聚光腔的聚光特性. 中国激光, 2017, 44(3): 301001--1

【41】李 密,胡 浩,高清松,王君涛,章 健,邬映臣,陈小明,周唐建,徐 浏,唐 淳,赵 娜,刘 鹏,许晓小. 高功率双浓度掺杂的Nd∶YAG复合陶瓷板条激光器. 光学学报, 2017, 37(5): 514003--1

【42】王狮凌,房丰洲. 大功率激光器及其发展. 激光与光电子学进展, 2017, 54(9): 90005--1

【43】刘 亮,王姗姗,黄秀军,徐红艳,宋镇江,石德乐. 板条激光模块热致波前畸变自校正设计. 激光与光电子学进展, 2017, 54(11): 111407--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF