中国激光, 2010, 37 (6): 1659, 网络出版: 2010-07-07   

适用于微流控芯片颗粒分选的阵列光镊系统

Optical Tweezers Array Based on Double-Plate Shearing Interference for Microfluidic Particle Sorter
作者单位
北京理工大学生命学院生物医学工程系, 北京 100081
摘要
介绍了基于双平板剪切干涉的阵列光镊系统的基本原理以及采用微流控芯片制备技术制作阵列光镊样品池的方法,并通过实验验证了阵列光镊系统可以有效实现颗粒捕获和移动的功能。双平板剪切干涉法利用多光束干涉原理,可实现高亮度、边缘清晰的明暗条纹,确保捕获颗粒所需的光学梯度力;条纹的周期易于调节,具有较大的灵活性。采用基于化学刻蚀法的玻璃微流控芯片制作方法具有较好的光学性能、力学性能和电绝缘性,且玻璃芯片对蛋白的吸附较小,适合细胞以及蛋白质等生物大分子的实验。阵列光镊与微流控芯片分析技术结合,可发挥样品用量少、效率高等优点,有望成为微纳尺度分析技术中的重要手段。
Abstract
The principle of optical tweezers array based on double-plate shearing interference and the particle separation chip by mircofluidic fabrication method is introduced. The function of particle trapping and separation of the optical tweezers array is verified by the experiments. According to the principle of multi-beam light interference, double-plate shearing interference can produce stripes with high brightness and sharp edge to insure the gradient force applied to the trapped particles. The high flexibility of the system is benefited from the easy adjustment of stripe period. The microfluidic chip made by glass is fabricated by chemical etching, with good optical property, mechanical strength and electricity insulation. And the glass microfluidic chip is suitable for the samples of cell and macromolecules, such as protein, because of weak adsorption of protein. Taking advantage of fewer sample consumption and higher efficiency, the combination of optical tweezers array with microfluidic chip could be one of important tools for micro-nano scale analytical technology in the near future.

周妍煌, 李婧方, 任有健, 胡晓明, 李勤. 适用于微流控芯片颗粒分选的阵列光镊系统[J]. 中国激光, 2010, 37(6): 1659. Zhou Yanhuang, Li Jingfang, Ren Youjian, Hu Xiaoming, Li Qin. Optical Tweezers Array Based on Double-Plate Shearing Interference for Microfluidic Particle Sorter[J]. Chinese Journal of Lasers, 2010, 37(6): 1659.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!