Photonics Research, 2019, 7 (9): 09000967, Published Online: Aug. 7, 2019  

Simulating robust far-field coupling to traveling waves in large three-dimensional nanostructured high-Q microresonators Download: 587次

Author Affiliations
1 State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
2 College of Optical Sciences, University of Arizona, Tucson, Arizona 85721, USA
3 Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85721, USA
4 e-mail: judy@optics.arizona.edu
5 e-mail: euanmc@optics.arizona.edu
Abstract
Ultra-high quality (Q) whispering gallery mode (WGM) microtoroid optical resonators have demonstrated highly sensitive biomolecular detection down to the single molecule limit; however, the lack of a robust coupling method has prevented their widespread adoption outside the laboratory. We demonstrate through simulation that a phased array of nanorods can enable free-space coupling of light both into and out of a microtoroid while maintaining a high Q. To simulate large nanostructured WGM resonators, we developed a new approach known as FloWBEM, which is an efficient and compact 3D wedge model with custom boundary conditions that accurately simulate the resonant Fano interference between the traveling WGM waves and a nanorod array. Depending on the excitation conditions, we find loaded Q factors of the driven system as high as 2.1×107 and signal-to-background ratios as high as 3.86%, greater than the noise levels of many commercial detectors. These results can drive future experimental implementation.

Lei Chen, Cheng Li, Yu-Min Liu, Judith Su, Euan McLeod. Simulating robust far-field coupling to traveling waves in large three-dimensional nanostructured high-Q microresonators[J]. Photonics Research, 2019, 7(9): 09000967.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!