首页 > 论文 > 激光与光电子学进展 > 57卷 > 24期(pp:240001--1)

高速超分辨结构光照明显微的关键技术及应用 (封面文章) (特邀综述)

High-Speed Structured Illumination Microscopy and Its Applications (Cover Paper) (Invited)

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

光学显微成像技术无论是在临床诊疗还是在基础科学研究上都发挥着重要的作用。伴随着新型荧光探针、光学控制、探测器件的不断发展,超分辨光学显微技术突破了传统光学衍射极限的限制,为现代生物医学研究提供了新的工具。在超分辨显微成像技术中,结构光照明显微镜(SIM)通过空间编码的结构光照明样品,将样品部分超出衍射极限的高频信息调制到低频中,从而通过光学系统实现超分辨成像。SIM具有成像速度快,光漂白和光毒性弱以及对荧光染料的非特异性需求等优点,被广泛应用于活细胞超分辨光学显微成像。本文回顾了SIM技术的重要原理与技术进步,重点介绍了SIM硬件设计与图像重构算法中关键的实验要点与技术难点,列举了现阶段SIM在生物成像中的部分应用,探讨了SIM未来的发展方向。期望本文能为SIM的设计和使用者提供一定的指导。

Abstract

Optical microscopy performs an increasingly important role in clinical diagnosis and basic scientific research. With the development of novel fluorescence probes, light controllers, and detectors, super-resolution optical microscopy breaks through the diffraction limit and provides new tools for modern biomedical research. Among these techniques, structured illumination microscope (SIM) achieves super-resolution by using spatially coded structured illumination which down modulates spatial frequencies beyond the cutoff into the pass band of the microscope. SIM shows lower photo bleaching and phototoxicity, higher imaging speed, and no special requirements for fluorescent probes, which has significant advantages in application to live-cell biomedical research. In this paper, the important principles and technological progress during the development of SIM are firstly reviewed. Then we focus on the key experimental techniques and difficulties in hardware design and image reconstruction of SIM. Finally, the several applications in biological imaging are listed. It is expected that this review can provide guidance for designing and using SIM.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:0436

DOI:10.3788/LOP57.240001

所属栏目:综述

基金项目:国家自然科学基金、 中国博士后科学基金、 国家重点研发计划;

收稿日期:2020-10-10

修改稿日期:2020-10-20

网络出版日期:2020-12-01

作者单位    点击查看

赵天宇:中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室, 陕西 西安 710119中国科学院大学, 北京 100049
汪召军:西安交通大学物理学院, 陕西 西安 710049
冯坤:西安交通大学物理学院, 陕西 西安 710049
梁言生:西安交通大学物理学院, 陕西 西安 710049
何旻儒:中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室, 陕西 西安 710119中国科学院大学, 北京 100049
云雪:西安交通大学物理学院, 陕西 西安 710049
雷铭:西安交通大学物理学院, 陕西 西安 710049中国科学院大学, 北京 100049

联系人作者:雷铭(ming.lei@mail.xjtu.edu.cn)

备注:国家自然科学基金、 中国博士后科学基金、 国家重点研发计划;

【1】Born M, Wolf E. Principles of optics (7th edition)[M]. Cambridge: , 2007, 382-391.

【2】Abbe E. Contributions to the theory of the microscope, that microscopic perception. Arch Anat Microscp Morphol Expér[J]. 1873, 9: 413-468.

【3】Berthelot J. A c''''imovi c'''' S S, Juan M L, et al. Three-dimensional manipulation with scanning near-field optical nanotweezers [J]. Nature Nanotechnology. 2014, 9(4): 295-299.

【4】Reimer L. Transmission electron microscopy: physics of image formation and microanalysis[M]. New York: , 2013, 1-2.

【5】Morita S, Giessibl F J, Meyer E, et al. Noncontact atomic force microscopy[M]. Cham: , 2015.

【6】Huang B, Bates M, Zhuang X W. Super-resolution fluorescence microscopy [J]. Annual Review of Biochemistry. 2009, 78(1): 993-1016.

【7】Schermelleh L, Heintzmann R, Leonhardt H. A guide to super-resolution fluorescence microscopy [J]. Journal of Cell Biology. 2010, 190(2): 165-175.

【8】Betzig E, Patterson G H, Sougrat R, et al. Imaging intracellular fluorescent proteins at nanometer resolution [J]. Science. 2006, 313(5793): 1642-1645.

【9】Hess S T. Girirajan T P K, Mason M D. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy [J]. Biophysical Journal. 2006, 91(11): 4258-4272.

【10】Shroff H, Galbraith C G, Galbraith J A, et al. Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics [J]. Nature Methods. 2008, 5(5): 417-423.Shroff H, Galbraith C G, Galbraith J A, et al. Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics [J]. Nature Methods. 2008, 5(5): 417-423.

【11】Rust M J, Bates M, Zhuang X W. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) [J]. Nature Methods. 2006, 3(10): 793-796.

【12】Bates M, Huang B, Dempsey G T, et al. Multicolor super-resolution imaging with photo-switchable fluorescent probes [J]. Science. 2007, 317(5845): 1749-1753.

【13】Huang B, Wang W, Bates M, et al. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy [J]. Science. 2008, 319(5864): 810-813.Huang B, Wang W, Bates M, et al. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy [J]. Science. 2008, 319(5864): 810-813.

【14】Sengupta P, van Engelenburg S B, Lippincott-Schwartz J. Superresolution imaging of biological systems using photoactivated localization microscopy [J]. Chemical Reviews. 2014, 114(6): 3189-3202.

【15】Hell S W, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy [J]. Optics Letters. 1994, 19(11): 780-782.

【16】Klar T A, Jakobs S, Dyba M, et al. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission [J]. PNAS. 2000, 97(15): 8206-8210.

【17】Arroyo-Camejo S, Adam M P, Besbes M, et al. Stimulated emission depletion microscopy resolves individual nitrogen vacancy centers in diamond nanocrystals [J]. ACS Nano. 2013, 7(12): 10912-10919.

【18】Li M Q, Li Y N, Liu W H, et al. Structured illumination microscopy using digital micro-mirror device and coherent light source [J]. Applied Physics Letters. 2020, 116: 233702.

【19】Gustafsson M G L, Agard D A, Sedat J W. Doubling the lateral resolution of wide-field fluorescence microscopy using structured illumination [J]. Proceedings of SPIE. 2000, 3919: 141-150.

【20】Hirano Y, Matsuda A, Hiraoka Y. Recent advancements in structured-illumination microscopy toward live-cell imaging [J]. Microscopy. 2015, 64(4): 237-249.

【21】Balzarotti F, Eilers Y, Gwosch K C, et al. Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes [J]. Science. 2017, 355(6325): 606-612.

【22】Ouyang W, Aristov A, Lelek M, et al. Deep learning massively accelerates super-resolution localization microscopy [J]. Nature Biotechnology. 2018, 36(5): 460-468.

【23】Zhang Y W, Lang S, Wang H W, et al. Super-resolution algorithm based on Richardson-Lucy deconvolution for three-dimensional structured illumination microscopy [J]. Journal of the Optical Society of America A. 2019, 36(2): 173-178.

【24】Christiansen E M, Yang S J, Ando D M, et al. In silico labeling: predicting fluorescent labels in unlabeled images [J]. Cell. 2018, 173(3): 792-803.

【25】Chen F, Tillberg P W, Boyden E S. Expansion microscopy [J]. Science. 2015, 347(6221): 543-548.

【26】Zhang X, Chen X Z, Zeng Z P, et al. Development of a reversibly switchable fluorescent protein for super-resolution optical fluctuation imaging (SOFI) [J]. ACS Nano. 2015, 9(3): 2659-2667.

【27】Neil M A A, Ju?kaitis R, Wilson T. Method of obtaining optical sectioning by using structured light in a conventional microscope [J]. Optics Letters. 1997, 22(24): 1905-1907.

【28】Heintzmann R, Cremer C G. Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating [J]. Proceedings of SPIE. 1999, 3568: 185-196.

【29】Gustafsson M G L. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. SHORT COMMUNICATION [J]. Journal of Microscopy. 2000, 198(2): 82-87.

【30】Gustafsson M G L. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution [J]. PNAS. 2005, 102(37): 13081-13086.

【31】James B P. Handbook of biological confocal microscopy [M]. New York: Springer Science & Business Media. 2006, 1-17.

【32】Schermelleh L, Carlton P M, Haase S, et al. Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy [J]. Science. 2008, 320(5881): 1332-1336.

【33】Kner P, Chhun B B, Griffis E R, et al. Super-resolution video microscopy of live cells by structured illumination [J]. Nature Methods. 2009, 6(5): 339-342.

【34】Müller C B, Enderlein J. Image scanning microscopy [J]. Physical Review Letters. 2010, 104(19): 198101.

【35】Shao L, Kner P, Rego E H, et al. Super-resolution 3D microscopy of live whole cells using structured illumination [J]. Nature Methods. 2011, 8(12): 1044-1046.

【36】Fiolka R, Shao L, Rego E H, et al. Time-lapse two-color 3D imaging of live cells with doubled resolution using structured illumination [J]. PNAS. 2012, 109(14): 5311-5315.

【37】Brunstein M, Wicker K, Hérault K, et al. Full-field dual-color 100-nm super-resolution imaging reveals organization and dynamics of mitochondrial and ER networks [J]. Optics Express. 2013, 21(22): 26162-26173.

【38】F?rster R. Lu-Walther H W, Jost A, et al. Simple structured illumination microscope setup with high acquisition speed by using a spatial light modulator [J]. Optics Express. 2014, 22(17): 20663-20677.

【39】Li D, Shao L, Chen B C, cytoskeletal dynamics[J]. Science, et al. 349(6251): aab3500 . 2015.

【40】Müller M, M?nkem?ller V, Hennig S, et al. Open-source image reconstruction of super-resolution structured illumination microscopy data in Image [J]. Nature Communications. 2016, 7: 10980.

【41】Demmerle J, Innocent C, North A J, et al. Strategic and practical guidelines for successful structured illumination microscopy [J]. Nature Protocols. 2017, 12(5): 988-1010.

【42】Huang X S, Fan J C, Li L J, et al. Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy [J]. Nature Biotechnology. 2018, 36(5): 451-459.

【43】Zhanghao K, Chen X Y, Liu W H, et al. Super-resolution imaging of fluorescent dipoles via polarized structured illumination microscopy [J]. Nature Communications. 2019, 10: 4694.

【44】Masters B R. Structured illumination microscopy[M]. //Springer Series in Optical Sciences: , 2020, 233-260.

【45】Shroff S A, Fienup J R, Williams D R. Lateral superresolution using a posteriori phase shift estimation for a moving object: experimental results [J]. Journal of the Optical Society of America A. 2010, 27(8): 1770-1782.

【46】Richter V, Piper M, Wagner M, et al. Increasing resolution in live cell microscopy by structured illumination (SIM) [J]. Applied Sciences. 2019, 9(6): 1188-1210.

【47】Lal A, Shan C Y, Xi P. Structured illumination microscopy image reconstruction algorithm [J]. IEEE Journal of Selected Topics in Quantum Electronics. 2016, 22(4): 50-63.

【48】Qian J, Dang S P, Zhou X, et al. Fast structured illumination three-dimensional color microscopic imaging method based on Hilbert-transform [J]. Acta Physica Sinica. 2020, 69(12): 128701.
千佳, 党诗沛, 周兴, 等. 基于希尔伯特变换的结构光照明快速三维彩色显微成像方法 [J]. 物理学报. 2020, 69(12): 128701.

【49】Dan D, Lei M, Yao B L, et al. DMD-based LED-illumination super-resolution and optical sectioning microscopy [J]. scientific Reports. 2013, 3: 1116.

【50】Qian J, Dang S P, Wang Z J, et al. Large-scale 3D imaging of insects with natural color [J]. Optics Express. 2019, 27(4): 4845-4857.

【51】Chen Y H, Cao R Z, Liu W J, et al. Widefield and total internal reflection fluorescent structured illumination microscopy with scanning galvo mirrors [J]. Journal of Biomedical Optics. 2018, 23(4): 1-9.

【52】Liu W J, Liu Q L, Zhang Z M, et al. Three-dimensional super-resolution imaging of live whole cells using galvanometer-based structured illumination microscopy [J]. Optics Express. 2019, 27(5): 7237-7248.

【53】Fiolka R, Beck M, Stemmer A. Structured illumination in total internal reflection fluorescence microscopy using a spatial light modulator [J]. Optics Letters. 2008, 33(14): 16291631.

【54】Wicker K. Non-iterative determination of pattern phase in structured illumination microscopy using auto-correlations in Fourier space [J]. Optics Express. 2013, 21(21): 24692-24701.

【55】Chang B J, Chou L J, Chang Y C, et al. Isotropic image in structured illumination microscopy patterned with a spatial light modulator [J]. Optics Express. 2009, 17(17): 14710-14721.

【56】Lu-Walther H W, Kielhorn M, F?rster R, et al. FastSIM: a practical implementation of fast structured illumination microscopy [J]. Methods and Applications in Fluorescence. 2015, 3(1): 014001.

【57】Descloux A, Müller M, Navikas V, et al. High-speed multiplane structured illumination microscopy of living cells using an image-splitting prism [J]. Nanophotonics. 2019, 9(1): 143-148.

【58】Suzuki T, Kajimoto S, Kitamura N, et al. A millisecond structured illumination microscope for super-resolution live cell imaging [J]. Applied Physics Express. 2020, 13(4): 045002.

【59】Martínez-García A, Moreno I. Sánchez-López M M, et al. Operational modes of a ferroelectric LCoS modulator for displaying binary polarization, amplitude, and phase diffraction gratings [J]. Applied Optics. 2009, 48(15): 2903-2914.

【60】O''''Holleran K, Shaw M. Polarization effects on contrast in structured illumination microscopy [J]. Optics Letters. 2012, 37(22): 4603-4605.

【61】Zhao T Y, Zhou X, Dan D, et al. Polarization control methods in structured illumination microscopy [J]. Acta Physica Sinica. 2017, 66(14): 148704.
赵天宇, 周兴, 但旦, 等. 结构光照明显微中的偏振控制 [J]. 物理学报. 2017, 66(14): 148704.

【62】Guo Y T, Li D, Zhang S W, et al. Visualizing intracellular organelle and cytoskeletal interactions at nanoscale resolution on millisecond timescales [J]. Cell. 2018, 175(5): 1430-1442.

【63】Shroff S A, Fienup J R, Williams D R. Phase-shift estimation in sinusoidally illuminated images for lateral superresolution [J]. Journal of the Optical Society of America A. 2009, 26(2): 413-424.

【64】Wicker K, Mandula O, Best G, et al. Phase optimisation for structured illumination microscopy [J]. Optics Express. 2013, 21(2): 2032-2049.

【65】Zhou X, Lei M, Dan D, et al. Image recombination transform algorithm for superresolution structured illumination microscopy [J]. Journal of Biomedical Optics. 2016, 21(9): 096009.

【66】Chakrova N, Rieger B, Stallinga S. Deconvolution methods for structured illumination microscopy [J]. Journal of the Optical Society of America A. 2016, 33(7): B12-B20.

【67】Verveer P J, Gemkow M J, Jovin T M. A comparison of image restoration approaches applied to three-dimensional confocal and wide-field fluorescence microscopy [J]. Journal of Microscopy. 1999, 193(1): 50-61.

【68】Sarder P, Nehorai A. Deconvolution methods for 3-D fluorescence microscopy images [J]. IEEE Signal Processing Magazine. 2006, 23(3): 32-45.

【69】Wallace W, Schaefer L H, Swedlow J R. A workingperson''''s guide to deconvolution in light microscopy [J]. BioTechniques. 2001, 31(5): 1076-1097.

【70】Gustafsson M G L, Shao L, Carlton P M, et al. Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination [J]. Biophysical Journal. 2008, 94(12): 4957-4970.

【71】Perez V, Chang B J. Stelzer E H K. Optimal 2D-SIM reconstruction by two filtering steps with Richardson-Lucy deconvolution [J]. Scientific Reports. 2016, 6: 37149-37150.

【72】Chu K Q. McMillan P J, Smith Z J, et al. Image reconstruction for structured-illumination microscopy with low signal level [J]. Optics Express. 2014, 22(7): 8687-8702.

【73】Song L Y. Lu-Walther H W, F?rster R, et al. Fast structured illumination microscopy using rolling shutter cameras [J]. Measurement Science and Technology. 2016, 27(5): 055401.

【74】Markwirth A, Lachetta M, M?nkem?ller V, et al. Video-rate multi-color structured illumination microscopy with simultaneous real-time reconstruction [J]. Nature Communications. 2019, 10: 4315.

【75】Turcotte R, Liang Y J, Tanimoto M, et al. Dynamic super-resolution structured illumination imaging in the living brain [J]. PNAS. 2019, 116(19): 9586-9591.

【76】Vavrdová T, ?amajová O. K r˙enek P, et al. Multicolour three dimensional structured illumination microscopy of immunolabeled plant microtubules and associated proteins [J]. Plant Methods. 2019, 15: 22-33.

【77】Kashiwagi Y, Higashi T, Obashi K, et al. Computational geometry analysis of dendritic spines by structured illumination microscopy [J]. Nature Communications. 2019, 10: 1285.

【78】Phillips J K, Sherman S A, Cotton K Y, et al. Characterization of neurite dystrophy after trauma by high speed structured illumination microscopy and lattice light sheet microscopy [J]. Journal of Neuroscience Methods. 2019, 312: 154-161.

【79】Fumagalli S, Fiordaliso F, Perego C, et al. The phagocytic state of brain myeloid cells after ischemia revealed by superresolution structured illumination microscopy [J]. Journal of Neuroinflammation. 2019, 16: 9.Fumagalli S, Fiordaliso F, Perego C, et al. The phagocytic state of brain myeloid cells after ischemia revealed by superresolution structured illumination microscopy [J]. Journal of Neuroinflammation. 2019, 16: 9.

【80】Bonin K, Smelser A, Salvador Moreno N, et al. Structured illumination reveals reduced chromatin cohesion in cells with DNA damage [J]. Biophysical Journal. 2019, 116(3): 283-290.

【81】Chen Q X, Shao X T, Hao M G, et al. Quantitative analysis of interactive behavior of mitochondria and lysosomes using structured illumination microscopy [J]. Biomaterials. 2020, 250: 120059.

【82】Shao X T, Chen Q X, Ling P X, et al. Drug screening and discovery strategies at nanoscale morphology using structured illumination microscopy [J]. Biophysical Journal. 2019, 116(3): 267a.

【83】-07-24)[2020-08-04] [EB/OL]. ZEISS. Elyra 7 with lattice SIM. 2019.-07-24)[2020-08-04] [EB/OL]. ZEISS. Elyra 7 with lattice SIM. 2019.

【84】Nikon. N-SIM S[EB/OL]. -01-22)[2020-08-04] . 2020.Nikon. N-SIM S[EB/OL]. -01-22)[2020-08-04] . 2020.

【85】GE. Super resolution microscopy[EB/OL]. -02-29)[2020-08-04] . 2020.GE. Super resolution microscopy[EB/OL]. -02-29)[2020-08-04] . 2020.

【86】Zhang C H, Zhao Z W, Chen L Y, et al. Application of adaptive optics in biological fluorescent microscopy [J]. Scientia Sinica (Physica,Mechanica & Astronomica). 2017, 47(8): 26-39.
张财华, 赵志伟, 陈良怡, 等. 自适应光学在生物荧光显微成像技术中的应用 [J]. 中国科学:物理学力学天文学. 2017, 47(8): 26-39.
Zhang C H, Zhao Z W, Chen L Y, et al. Application of adaptive optics in biological fluorescent microscopy [J]. Scientia Sinica (Physica,Mechanica & Astronomica). 2017, 47(8): 26-39.
张财华, 赵志伟, 陈良怡, 等. 自适应光学在生物荧光显微成像技术中的应用 [J]. 中国科学:物理学力学天文学. 2017, 47(8): 26-39.

【87】Débarre D, Botcherby E J, Booth M J, et al. Adaptive optics for structured illumination microscopy [J]. Optics Express. 2008, 16(13): 9290-9305.

【88】Zheng W, Wu Y C, Winter P, et al. Adaptive optics improves multiphoton super-resolution imaging [J]. Nature Methods. 2017, 14(9): 869-872.

【89】Chang B J, Tang W C, Liu Y T, et al. Two-beam interference lattice lightsheet for structured illumination microscopy [J]. Journal of Physics D: Applied Physics. 2020, 53(4): 044005.

【90】Liu Y, Dale S, Ball R, et al. Imaging neural events in zebrafish larvae with linear structured illumination light sheet fluorescence microscopy [J]. Neurophotonics. 2019, 6(1): 015009.Liu Y, Dale S, Ball R, et al. Imaging neural events in zebrafish larvae with linear structured illumination light sheet fluorescence microscopy [J]. Neurophotonics. 2019, 6(1): 015009.

【91】Schaefer L H, Schuster D, Schaffer J. Structured illumination microscopy: artefact analysis and reduction utilizing a parameter optimization approach [J]. Journal of Microscopy. 2004, 216(2): 165-174.

【92】Heintzmann R. Saturated patterned excitation microscopy with two-dimensional excitation patterns [J]. Micron. 2003, 34(6/7): 283-291.

【93】Meng F F, Du L P, Yang A P, et al. Low-loss metal-dielectric waveguide mode enabled structured illumination microscopy with 018λ0 resolution [J]. Optics Express. 2019, 27(6): 9250-9257.Meng F F, Du L P, Yang A P, et al. Low-loss metal-dielectric waveguide mode enabled structured illumination microscopy with 018λ0 resolution [J]. Optics Express. 2019, 27(6): 9250-9257.

【94】Dang D, Zhang H, Xu Y, et al. Super-resolution visualization of self-assembling helical fibers using aggregation-induced emission luminogens in stimulated emission depletion nanoscopy [J]. ACS Nano. 2019, 13(10): 11863-11873.

【95】Wang H D, Rivenson Y, Jin Y Y, et al. Deep learning enables cross-modality super-resolution in fluorescence microscopy [J]. Nature Methods. 2019, 16(1): 103-110.

引用该论文

Zhao Tianyu,Wang Zhaojun,Feng Kun,Liang Yansheng,He Minru,Yun Xue,Lei Ming. High-Speed Structured Illumination Microscopy and Its Applications[J]. Laser & Optoelectronics Progress, 2020, 57(24): 240001

赵天宇,汪召军,冯坤,梁言生,何旻儒,云雪,雷铭. 高速超分辨结构光照明显微的关键技术及应用[J]. 激光与光电子学进展, 2020, 57(24): 240001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF