激光与光电子学进展, 2011, 48 (5): 052301, 网络出版: 2011-05-09   

新型双吸收层光探测器量子效率的理论分析

Theoretical Analysis of Quantum Efficiency of Novel Dual-Absorption Photodetector
作者单位
北京邮电大学信息光子学与光通信教育部重点实验室, 北京 100876
摘要
随着光纤通信技术的发展,高量子效率、高速响应光电探测器在长距离高速光纤通信系统中的作用尤显突出。利用传输矩阵法(TMM)对新型双吸收层光电探测器(RCE-PINIP)的量子效率进行了理论计算,然后对其进行了相应的理论仿真。结果显示,在50~800 nm厚度范围内,随着双吸收层厚度逐渐变大,RCE-PINIP模型的量子效率会出现多个峰值,量子效率的峰值先增大到最大值,在两个单吸收层厚度同为325 nm时,量子效率达到98.6%,然后峰值逐渐递减。在两个单吸收层厚度分别固定为325 nm时,量子效率随另一个单吸收层厚度的变化关系几乎相同。针对这个RCE-PINIP模型结构,通过对两个单吸收层厚度分别进行优化,得到了一个能实现高量子效率的优化结构模型。
Abstract
With the development of optical fiber communication technologies, high quantum efficiency and high speed photodetectors are more and more essential for long-hual high-bit-rate optical communication systems. The quantum efficiency (QE) of novel dual-absorption resonant cavity enhanced photodetector (RCE-PINIP) is calculated theoretically using transfer matrix method (TMM) and the results are simulated. It is revealed that with the gradual increase of dual-absorption layer thickness in the 50~800 nm range, there will emerge several QE peaks for this RCE-PINIP structure model. And the QE peak firstly increases to the highest value (98.6%) when the thickness of two single absorption layers is both 325 nm, and then the peak gradually decreases. When the thickness of two single absorption layers is fixed at 325nm respectively, dependences of QE on the thickness of other single absorption layer are almost the same. So for this RCE-PINIP model structure, after the optimizations on the thickness of both single absorption layer thickness, an optimized structure which can achieve high QE is obtained.

谢三先, 黄永清, 刘庆, 段小峰, 王伟, 黄辉, 任晓敏. 新型双吸收层光探测器量子效率的理论分析[J]. 激光与光电子学进展, 2011, 48(5): 052301. Xie Sanxian, Huang Yongqing, Liu Qing, Duan Xiaofeng, Wang Wei, Huang Hui, Ren Xiaomin. Theoretical Analysis of Quantum Efficiency of Novel Dual-Absorption Photodetector[J]. Laser & Optoelectronics Progress, 2011, 48(5): 052301.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!