发光学报, 2011, 32 (1): 21, 网络出版: 2011-01-26  

超声喷雾共沉淀法制备Eu3+掺杂纳米ZnO粉体

Preparation of Eu3+-doped Nano-ZnO by Ultrasonic Atomization and Co-precipitation Method
作者单位
1 宁波大学 光电子功能材料重点实验室, 浙江 宁波315211
2 宁波大学 材料科学与化学工程学院, 浙江 宁波315211
摘要
采用超声喷雾共沉淀法技术,以Zn(NO3)2·6H2O和(NH4)CO3为前驱体制备了ZnO纳米粉体以及ZnO∶Eu粉体。研究了超声喷雾条件、反应时间以及化学组分对ZnO纳米粉体的形貌和尺寸的影响,着重研究了氢氧化锌脱水生成ZnO纳米粉体的化学处理条件。在ZnO中掺入Eu3+离子,研究了不同Eu3+掺杂量对纳米ZnO粉体发光性能的影响。借助于XRD、SEM和荧光光谱技术对粉体的晶相、形貌及发光性能进行了表征。结果表明:所获ZnO纳米粒子的平均粒径为35~45 nm,结晶程度好且呈均匀的球形,当Eu3+掺杂摩尔分数达10%时,未发现荧光的浓度猝灭现象。
Abstract
In this paper, nano-ZnO and Eu3+ doped nano-ZnO powders were prepared by ultrasonic atomization and co-precipitation method with Zn(NO3)2 and (NH4)2CO3 as reactants. The effects of the ultrasonic spraying condition, the reaction time and chemical composition on the morphology and size of ZnO nanopowder were carefully investigated. And the chemical processing condition of the zinc hydroxide dehydrated to ZnO nano-powder was analyzed. XRD, SEM and fluorescence spectrophotometer were employed to characterize the phase composition, particle size and luminescence property of the nano-powder. XRD results of the powder show a typical wurtzite hexagonal crystal structure. The photoluminescence spectra indicate that Eu3+ ions are successfully doped into the crystal lattice of ZnO matrix. The emission of the 5D0→7F2 comes from an allowed electric-dipole transition is the strongest. The SEM results show that the prepared spherical nanosized zinc oxide have narrow size distributions at 35~45 nm. The effect of ZnO content on the emission intensity was also investigated. The concentration quenching for the emission intensity did not occur when the doping concentration of Eu3+ up to 10%.

和宁宁, 邱杨, 夏海平, 王冬杰. 超声喷雾共沉淀法制备Eu3+掺杂纳米ZnO粉体[J]. 发光学报, 2011, 32(1): 21. HE Ning-ning, QIU Yang, XIA Hai-ping, WANG Dong-jie. Preparation of Eu3+-doped Nano-ZnO by Ultrasonic Atomization and Co-precipitation Method[J]. Chinese Journal of Luminescence, 2011, 32(1): 21.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!