光学 精密工程, 2011, 19 (1): 118, 网络出版: 2011-03-28   

基于555多谐振荡器检测的碳纳米管湿敏传感器

Carbon nanotube sensors based on 555 multivibrators
作者单位
1 哈尔滨工业大学 MEMS中心,黑龙江 哈尔滨 150001
2 哈尔滨工业大学 微系统与微结构加工教育部重点实验室,黑龙江 哈尔滨 150001
摘要
针对使用仪器检测电容型碳纳米管湿度传感器的电容信号不利于传感器的使用与推广问题,提出了一种基于555多谐振荡式电路检测的电容型碳纳米管湿度传感器。首先,分析了传感器工作原理以及检测电路的检测原理,设计并制作了电容型碳纳米管湿度传感器;然后,分别使用仪器及检测电路对传感器进行测试;最后,对传感器响应时间进行了测试与分析。实验结果表明,该传感器在环境相对湿度从11%变化到97%过程中,电容相对灵敏度为905%,输出频率相对灵敏度为889%,两者较为吻合,表明该电路能很好地将电容信号转化为频率信号输出。另外,传感器对湿度的响应时间约为4 s,恢复时间约为18 s,功耗约为12 mW,具有功耗低、响应速度快等优点。
Abstract
The capacitive signals of capacitive carbon nanotube humidity sensors are usually tested by measuring instruments, which restricts the uses and developments of the sensors seriously. Focusing on this problem,one kind of capacitive carbon nanotube humidity sensor based on a 555 multivibrator was presented. Firstly, the principle of the sensor and the detecting circuit were discussed, and the sensor was designed and fabricated. Then, the sensor was tested by both the RCL apparatus and the proposed circuit, respectively. Finally, the response and recovery time of the sensor was tested. The testing results demonstrate that when the Relative Humidities (RH) surrounding the sensor change from 11% to 97%, the capacitive sensitivity and the output frequency sensitivity of the sensor are 905% and 889%,respectively. The frequency sensitivity is closed to the capacitive sensitivity, which means the circuit can well change capacitive signals to frequency signals.Furthermore, the adesorption and desorption time of the sensor is about 4 s and 18 s, respectively,which shows the sensor can offer low power consumption and fast response and has potential application prospects.

赵振刚, 刘晓为, 王鑫, 金海燕, 谭晓昀. 基于555多谐振荡器检测的碳纳米管湿敏传感器[J]. 光学 精密工程, 2011, 19(1): 118. ZHAO Zhen-gang, LIU Xiao-wei, WANG Xin, JIN Hai-yan, TAN Xiao-yun. Carbon nanotube sensors based on 555 multivibrators[J]. Optics and Precision Engineering, 2011, 19(1): 118.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!