Chinese Optics Letters, 2011, 9 (6): 060401, Published Online: May. 13, 2011   

X-ray photon-counting detector based on a micro-channel plate for pulsar navigation Download: 832次

Author Affiliations
1 State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China
2 Graduate University of Chinese Academy of Sciences, Beijing 100049, China
Abstract
The pulse time of arrival (TOA) is a determining parameter for accurate timing and positioning in X-ray pulsar navigation. The pulse TOA can be calculated by comparing the measured arrival time with the predicted arrival time of the X-ray pulse for pulsar. In this study, in order to research the measurement of pulse arrival time, an experimental system is set up. The experimental system comprises a simulator of the X-ray pulsar, an X-ray detector, a time-measurement system, and a data-processing system. An X-ray detector base is proposed on the basis of the micro-channel plate (MCP), which is sensitive to soft X-ray in the 1–10 keV band. The MCP-based detector, the structure and principle of the experimental system, and results of the pulse profile are described in detail. In addition, a discussion of the effects of different X-ray pulse periods and the quantum efficiency of the detector on pulse-profile signal-to-noise ratio (SNR) is presented. Experimental results reveal that the SNR of the measured pulse profile becomes enhanced as the quantum efficiency of the detector increases. The SNR of the pulse profile is higher when the period of the pulse is smaller at the same integral.

Baomei Chen, Baosheng Zhao, Huijun Hu, Qiurong Yan, Lizhi Sheng. X-ray photon-counting detector based on a micro-channel plate for pulsar navigation[J]. Chinese Optics Letters, 2011, 9(6): 060401.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!