首页 > 论文 > 光学学报 > 31卷 > s1期(pp:100207--1)

应力分布对单频光纤拉曼放大器中受激布里渊散射的影响

Influence of Strain Distribution on Stimulated Brillouin Scattering in Single-Frequency Fiber Raman Amplifiers

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

高功率单频光纤拉曼放大器(SF-FRA)的输出功率往往会由于受激布里渊散射(SBS)的出现而受到限制。从SF-FRA中SBS因素限制下的强度耦合方程组出发,讨论了SBS因素对不同拉曼增益光纤长度的SF-FRA输出功率的限制作用,比较了不同的应力场施加方案对SBS抑制效果的影响,提出了优化后的应力分布施加方案。数值模拟结果表明,在拉曼增益光纤中引入应力梯度分布,可使得SBS的增益谱变宽,增益系数降低,进而实现对SBS的抑制;在光纤对应力的承受范围内,所施加的应力的位置、份数、每段光纤上的应力大小、应力施加均匀性等对放大器性能都有较大影响;采取优化后的应力施加方案,可将SF-FRA的输出功率提高近一倍。数值模拟结果为实验研究高功率SF-FRA中SBS的抑制提供了理论指导。

Abstract

High power operation of single-frequency Raman fiber amplifier (SF-FRA) is usually limited by the generating of stimulated Brillouin scattering (SBS). Based on the intensity equations combining SBS and stimulated Raman scattering (SRS), the limitation action to the output power of SF-FRAs for SBS is studied, the influence of different strain distributions to SBS inhibition is compared and an optimal solution of strain distribution is proposed. The simulation results indicate that strain gradients along Raman gain fibers can broaden the SBS gain profile and thereby suppress SBS. The location, stage number, value and length have the optima in the fibers′ receivable range of strain. The threshold of output power of SF-FRA can be increased about 100% under the optimum condition.

投稿润色
补充资料

中图分类号:O436

DOI:10.3788/aos201131.s100207

所属栏目:光纤光学与光通信

基金项目:国家自然科学基金(61077076,61007037,10904173,11004247)、教育部新世纪优秀人才支持计划(NCET-08-142)资助课题。

收稿日期:2010-12-28

修改稿日期:2011-03-15

网络出版日期:--

作者单位    点击查看

许将明:国防科学技术大学光电科学与工程学院, 湖南 长沙 410073
冷进勇:国防科学技术大学光电科学与工程学院, 湖南 长沙 410073
吴武明:国防科学技术大学光电科学与工程学院, 湖南 长沙 410073
周朴:国防科学技术大学光电科学与工程学院, 湖南 长沙 410073
侯静:国防科学技术大学光电科学与工程学院, 湖南 长沙 410073

联系人作者:许将明(xu_jiang_ming@yahoo.com.cn)

备注:许将明(1988—),男,硕士研究生,主要从事光纤激光器与放大器等方面的研究。

【1】Yan Feng, Luke R. Taylor, Domencio Bonaccini Calia et al.. 39 W narrow linewidth Raman fiber amplifier with frequency doubling to 26.5 W at 589 nm[C]. Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2009), paper PDPA4

【2】Hiroji Masuda. Recent progress on optical fiber amplifiers and their applications[C]. SPIE, 2006, 6389: 638902

【3】N. S. Kim, M. Prabhu, C. Li et al.. 1239/1484 nm cascaded phosphosilicate Raman fiber laser with CW output power of 1.36 W at 1484 nm pumped by CW Yb-doped double-clad fiber laser at 1064 nm and spectral continuum generation[J]. Opt. Commun., 2000, 176(1-3): 219~222

【4】H. Masuda, K. I. Suzuki, S. Kawai et al.. Ultra-wideband optical amplification with 3 dB bandwidth of 65 nm using a gain-equalised two-stage erbium-doped fiber amplifier and Raman amplification[J]. Electron. Lett., 1997, 33(9): 753~754

【5】Yan Feng, Luke R. Taylor, Domencio Bonaccini Calia. 50 W CW visible laser source at 589 nm obtained via frequency doubling of three coherently combined narrow-band Raman fibre amplifiers[J]. Opt. Express, 2010, 18(8): 8540~8555

【6】Leng Jinyong, Wu Wuming, Chen Shengping et al.. Suppression of stimulated brillouin scattering in single-frequency Raman fiber amplifiers[J]. Chinese J. Lasers, 2010, 37(9): 2334~2339
冷进勇, 吴武明, 陈胜平 等. 单频拉曼光纤放大器中受激布里渊散射的抑制[J]. 中国激光, 2010, 37(9): 2334~2339

【7】Y. Jeong, J. Nilsson, J. K. Sahu et al.. Power scaling of single-frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W[J]. IEEE J. Sel. Top. Quantum. Electron., 2007, 13(3): 546~551

【8】J. E. Rothenberg, P. A.Thielen, M. Wickham et al.. Suppression of stimulated Brillouin scattering in single-frequency multi-Kilowatt fiber amplifiers[C]. SPIE, 2008, 6873: 68730O

【9】Wang Chuncan, Zhang Fan, Lu Yuchun et al.. Study of stimulated brillouin scattering effect in high-power single-frequency fiber amplifiers[J]. Chinese J. Lasers, 2006, 33(12): 1630~1635
王春灿, 张帆, 陆玉春 等. 单频大功率光纤放大器中抑制受激布里渊散射的理论分析[J]. 中国激光, 2006, 33(12): 1630~1635

【10】M. L. Dakss, P. Melman. Amplified spontaneous Raman scattering and gain in fiber Raman amplifiers[J]. J. Lightwave Technol., 1985, LT-3(4): 806~813

【11】S. R. Chinn. Analysis of counter-pumped small-signal fibre Raman amplifiers[J]. Electron. Lett., 1997, 33(7): 607~608

【12】Jinyong Leng, Shengping Chen, Wuming Wu et al.. Analysis and simulation of single-frequency Raman fiber amplifiers[J]. Opt. Commun., 2011, 284(12): 2997~3003

【13】R. W. Boyd. Nonlinear Optics[M]. San Diego: Academic Press, 1992, chap.8

【14】Govind P. Agrawal. Nonlinear Fiber Optics & Applications of Nonlinear Fiber Optics[M]. Jia Dongfang, Yu Zhenhong, Tan Bin et al. Transl. Beijing: Publishing House of Electronics Industry, 2002.12
阿戈沃. 非线性光纤光学原理及应用[M]. 贾东方, 余震虹, 谈斌等 译. 北京: 电子工业出版社, 2002.12

【15】A. Liu. Stimulated Brillouin scattering in single-frequency fiber amplifiers with delivery fibers[J]. Opt. Express, 2009, 17(17): 15201~15209

【16】Yan Feng, Luke R. Taylor, Domencio Bonaccini Calia. Multiwatts narrow linewidth fiber Raman amplifiers[J] . Opt. Express, 2008, 16(15): 10927~10932

【17】Yan Feng, Luke R. Taylor, Domenico Bonaccini Calia. 150 W highly-efficient Raman fiber laser[J]. Opt. Express, 2009, 17(26): 23678~23683

【18】Yan Feng, Luke R. Taylor, Domenico Bonaccini Calia. 25 W Raman-fiber-amplifier-based 589 nm laser for laser guide star[J]. Opt. Express, 2009, 17(21): 19021~19026

引用该论文

Xu Jiangming,Leng Jinyong,Wu Wuming,Zhou Pu,Hou Jing. Influence of Strain Distribution on Stimulated Brillouin Scattering in Single-Frequency Fiber Raman Amplifiers[J]. Acta Optica Sinica, 2011, 31(s1): s100207

许将明,冷进勇,吴武明,周朴,侯静. 应力分布对单频光纤拉曼放大器中受激布里渊散射的影响[J]. 光学学报, 2011, 31(s1): s100207

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF