中国激光, 2011, 38 (7): 0703006, 网络出版: 2011-06-28   

结晶器铜合金表面激光原位制备纳米颗粒增强钴基梯度涂层

Nano-Particles Reinforced Co-Based Gradient Coating with High Wear-Resistance Prepared in-situ by Laser on Surface of Crystallizer Copper Alloy
作者单位
东北大学材料各向异性与织构工程教育部重点实验室, 辽宁 沈阳 110004
摘要
在Co基熔覆涂层材料成分与结构设计的基础上,利用脉冲激光诱导原位反应技术,在结晶器Cu合金基体材料上制备陶瓷相增强Co基梯度涂层。利用分析技术对制备涂层的组织结构、成分、性能和涂层形成机理进行了系统研究。结果表明,设计成分的梯度变化成功制备出具有3层梯度的Co基合金涂层,实现了涂层组织与性能的梯度变化。梯度涂层里没有裂纹和气孔缺陷,涂层与Cu合金基体形成冶金界面结合。激光诱导原位生成了纳米级Cr-Ni-Fe-C,MoNi4,Cr7C2,WC1-x等颗粒,起到了增强Co基合金梯度涂层的作用。梯度涂层各层的陶瓷颗粒数量呈现由第1层到第3层逐渐增多的趋势,硬度由铜合金基体的94 HV逐渐增加到最外层涂层的523 HV。涂层中石墨具有改善梯度涂层摩擦性能的作用。
Abstract
Based on the compositional and structural designing of Co-based cladding materials, a nano-particle reinforced Co-based alloy gradient coating is produced by laser-inducing in-situ technique on the crysrallizer Cu alloy. The microstructure, hardness, anti-wear property and mechanism of the gradient coating are studied using analysis techniques. The results show that the gradient coating is composed of three layers, which are the surface, inside structure and a metallurgical bond between the gradient coating and Cu alloy substrate. Nano-particles of Cr-Ni-Fe-C, MoNi4, Cr7C2, and WC1-x synthesized in-situ play role as a reinforced Co-base gradient coating. The number of the ceramic particles increases from the first layer to the third layer. The micro-hardness of the gradient coating increases gradually from 94 HV of the substrate to 523 HV of the outmost layer. The graphite has function of improving frictional property of the gradient coating.

陈岁元, 董江, 陈军, 梁京, 刘常升. 结晶器铜合金表面激光原位制备纳米颗粒增强钴基梯度涂层[J]. 中国激光, 2011, 38(7): 0703006. Chen Suiyuan, Dong Jiang, Chen Jun, Liang Jing, Liu Changsheng. Nano-Particles Reinforced Co-Based Gradient Coating with High Wear-Resistance Prepared in-situ by Laser on Surface of Crystallizer Copper Alloy[J]. Chinese Journal of Lasers, 2011, 38(7): 0703006.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!