中国激光, 2011, 38 (9): 0906002, 网络出版: 2011-08-05   

指数掺杂透射式GaAs光电阴极表面光电压谱研究

Research on Surface Photovoltage Spectroscopy for Exponential Doping Transmission-Mode GaAs Photocathodes
作者单位
1 南京理工大学电子工程与光电技术学院, 江苏 南京 210094
2 中国计量学院光学与电子科技学院, 浙江 杭州 310018
摘要
通过求解一维稳态少数载流子扩散方程,推导了指数掺杂和均匀掺杂的透射式GaAs光电阴极表面光电压谱理论方程。利用金属有机化学气相沉积(MOCVD)外延生长了发射层厚度相同、掺杂结构不同的两款透射式阴极材料。通过表面光电压谱实验测试和理论拟合发现指数掺杂结构在发射层厚度和后界面复合速率相同的情况下能够有效提高阴极电子扩散长度,这主要由于内建电场能够促使光生电子通过扩散和电场漂移两种方式向表面运动,从而最终提升阴极的发射效率和表面光电压谱。利用能带计算公式和电子散射理论对这两种不同结构材料的表面光电压谱进行了详细分析。
Abstract
By solving the one-dimensional diffusion equation for equilibrium minority carriers of transmission-mode GaAs phtotocathodes, the equations for surface photovoltage spectroscopy of exponential and uniform doping transmission-mode GaAs photocathodes are deduced. Through metal organic chemistry vaporation deposition (MOCVD) technique, two GaAs photocathodes of different doping structures with the same active layer depth are designed. By measuring and theoretically emulating the surface photovoltage spectroscopy curves for two materials, the exponential doping structure can well increase the electric diffusion length for transmission-mode GaAs photocathodes. The reason is that the internal electric field can drive the photo-excited electrons to move toward surface barriers through both diffusing and electric field drifting, thus can finally elevate the emission efficiency and the surface photovoltage spectroscopy. The difference of two surface photovoltage spectroscopy waves can be well explained by the internal energy band equations and electron scattering theory.

陈亮, 钱芸生, 常本康, 张益军. 指数掺杂透射式GaAs光电阴极表面光电压谱研究[J]. 中国激光, 2011, 38(9): 0906002. Chen Liang, Qian Yunsheng, Chang Benkang, Zhang Yijun. Research on Surface Photovoltage Spectroscopy for Exponential Doping Transmission-Mode GaAs Photocathodes[J]. Chinese Journal of Lasers, 2011, 38(9): 0906002.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!