光学学报, 2011, 31 (12): 1216002, 网络出版: 2011-11-28   

多晶硅表面织构化新工艺的研究

A New Process for Surface Texture of Multicrystalline Silicon
作者单位
南昌航空大学光伏器件与技术研究所, 江西 南昌 330063
摘要
先后采用电化学腐蚀法和化学酸腐蚀法腐蚀多晶硅,用于制备高效率多晶硅太阳电池。首先将多晶硅片在HF和CH3CH2OH体积比为12的溶液中进行电化学预腐蚀,具体研究不同电流密度对多晶硅绒面形貌的影响;然后采用化学酸腐蚀法进行二次腐蚀,去除多晶硅表面的疏松结构,得到高性能的多晶硅绒面。使用扫描电镜观察多晶硅表面腐蚀形貌。实验结果表明,当电流密度为30 mA/cm2、腐蚀时间为300 s时,多晶硅表面形成带孔洞的疏松结构;预腐蚀后多晶硅片在HF和H2O2体积比为41的化学腐蚀溶液中,在室温超声腐蚀60 s后,腐蚀坑平均孔径为2~4 μm,坑深为1.5~2 μm,能达到良好的光陷阱作用和减反射效果,可以提高多晶硅太阳电池的光电转换效率。
Abstract
Electrochemical etching and chemical acid etching are used to optimize the surface texture for improving the conversion efficiency of multicrystalline silicon solar cells. The effect of different current densities on the surface morphology of multicrystalline silicon is studied by the method of electrochemical etching in the HF and CH3CH2OH solution with the volume ratio of 12; then the surface loose structure of the multicrystalline silicon is removed through the chemical acid etching to form high performance surface texture. Surface morphology of multicrystalline silicon is characterized by scanning electron microscopy. The results show that the surface porous structure of the multicrystalline silicon is fabricated after electrochemical etching for 300 s while the favorable current density is 30 mA/cm2. After ultrasonic etching for 60 s in the chemical acid solution with the volume ratio of HF to H2O2 of 41 at room temperature, the surface texture with hole diameter of 2~4 μm and hole depth of 1.5~2 μm is fabricated. It has good light-trap and anti-reflection effects on improving the conversion efficiency of multicrystalline silicon solar cells.

王应民, 程泽秀, 李清华, 江龙迎, 刘琪. 多晶硅表面织构化新工艺的研究[J]. 光学学报, 2011, 31(12): 1216002. Wang Yingmin, Cheng Zexiu, Li Qinghua, Jiang Longying, Liu Qi. A New Process for Surface Texture of Multicrystalline Silicon[J]. Acta Optica Sinica, 2011, 31(12): 1216002.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!