中国激光, 2012, 39 (5): 0505001, 网络出版: 2012-04-01   

基于内全反射微环空气孔型光子晶体光分插滤波器

Air-Hole Type Photonic Crystal Add-Drop Filters Based on Total-Internal-Reflection Ring Resonators
作者单位
福建师范大学激光与光电子技术研究所福建省光子技术重点实验室,医学光电科学与技术教育部重点实验室, 福建 福州 350007
摘要
提出一种基于内全反射微环和光子晶体带隙相结合的混合结构空气孔型二维三角晶格光子晶体光分插滤波器,通过压缩及移位围绕线缺陷波导的上下两排光子晶体阵列,实现空气孔型线缺陷波导单模的有效调控,进而影响信道的下路效率,并且利用二维时域有限差分法系统分析不同波导宽度以及不同移位量δ时滤波器的下路效率。模拟计算表明,当波导宽度为0.83晶格常数,耦合强度为0个晶格常数,移位量为0.5个晶格常数,信道波长为1464 nm时,下路效率为-0.11 dB,品质因子Q为1100;当波导宽度为0.83晶格常数,耦合强度为1个晶格常数,移位量为0个晶格常数时,下路效率为-0.89 dB,品质因子Q为2100。
Abstract
A hexagonal-lattice air-hole photonic crystal add-drop filter (OADF) is proposed combing the hybrid effect of total-internal-reflection (TIR) ring resonators and photonic crystal band gap. The mode profile of line defect waveguide can be effectively operated in single mode by either compressing or dislocating the two rows of photonic crystal above and below the line defect waveguide, which further affects the dropped efficiency. Dropped efficiencies of proposed filter with different widths of Bus-waveguide and disiocations δ are then numerically analyzed by using two-dimensional finite-difference time-domain (FDTD) numerical technique. The results show that -0.11 dB dropped efficiency and 1100 quality factor Q can be obtained with 1464 nm signal channel when the width of Bus-waveguide, coupling strength and dislocation are 0.83 periodicity, 0 periodicity and 0.5 periodicity. On the other hand, dropped efficiency of 0.89 dB and quality factor of 2100 can be also provided when the width of Bus-waveguide, coupling strength and displacement are 0.83 periodicity, 1 periodicity and 0 periodicity.

蒋俊贞, 强则煊, 许晓赋, 陈志勇, 邱怡申. 基于内全反射微环空气孔型光子晶体光分插滤波器[J]. 中国激光, 2012, 39(5): 0505001. Jiang Junzhen, Qiang Zexuan, Xu Xiaofu, Chen Zhiyong, Qiu Yishen. Air-Hole Type Photonic Crystal Add-Drop Filters Based on Total-Internal-Reflection Ring Resonators[J]. Chinese Journal of Lasers, 2012, 39(5): 0505001.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!