光学学报, 2012, 32 (9): 0906001, 网络出版: 2012-06-25   

新型四倍频光生毫米波矢量信号调制技术

Vector Signal Modulation Technique Based on a Novel Frequency Quadrupling Scheme in Millimeter-Wave Band
作者单位
西安电子科技大学综合业务网国家重点实验室, 陕西 西安 710071
摘要
提出一种基于双并联马赫曾德尔调制器(MZM)的新型四倍频光生毫米波技术,并用于矢量信号调制。传统的四倍频调制技术,由于数据信号同时调制到+2,-2阶边带上,拍频检测后两个边带上数据信号会产生相位叠加,只适用于不归零码(NRZ)等强度调制格式。提出的矢量信号调制技术将数据信号调制在一个-1阶边带上,另一个+3阶边带不携带数据,在拍频检测后幅度和相位信息被正确保留。同时,四倍频模块降低了传输过程中对电和光器件的带宽需求。理论分析和仿真结果表明,通过此方法产生的携带在60 GHz载波上的6.25×108 symbol/s的四相相移键控(QPSK)信号,经过20 km单模光纤传输后,误差向量幅度(EVM)损耗可以忽略。
Abstract
A novel frequency quadrupling scheme based on a dual parallel Mach-Zehnder modulator (MZM) for the generation of optical millimeter signal and modulation of the vector signal is demonstrated. The traditional frequency quadrupling modulation scheme, which modulates data on both +2 and -2 order optical sidebands and will cause the constellation overlapping after photodetector (PD) detection, can only carry the on-off keying data format such as not return to zero (NRZ). The proposed scheme encodes the electrical vector signal on the -1 order optical sideband, and a pure radio frequency (RF) tone at +3 order optical sideband. Therefore, phase and amplitude information will be correctly preserved after detection. Besides, a frequency quadrupling scheme is employed to reduce the bandwidth requirements of the electrical and optical components of the transmitter. A proof of concept and simulation is conducted by using a 6.25×108 symbol/s QPSK signal at a carrier frequency of 60 GHz , which indicates that the error vector magnitude (EVM) penalty is negligible after transmission over 20-km single-mode fiber (SMF).

王勇, 李明安, 赵强, 文爱军, 王方艳, 尚磊. 新型四倍频光生毫米波矢量信号调制技术[J]. 光学学报, 2012, 32(9): 0906001. Wang Yong, Li Ming′an, Zhao Qiang, Wen Aijun, Wang Fangyan, Shang Lei. Vector Signal Modulation Technique Based on a Novel Frequency Quadrupling Scheme in Millimeter-Wave Band[J]. Acta Optica Sinica, 2012, 32(9): 0906001.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!