激光与光电子学进展, 2012, 49 (12): 121405, 网络出版: 2012-11-22   

激光冲击强化“残余应力洞”测试验证及抑制方法研究

Validation and Restraint of “Residual Stress Hole” Produced by Laser Shock Processing
作者单位
空军工程大学工程学院, 陕西 西安 710038
摘要
圆光斑激光冲击强化条件下由于冲击边界产生反向塑性加载效应,会产生“残余应力洞”现象。对TC17、1Cr11Ni2W2MoV、LY2和K417等4种材料进行圆光斑单点激光冲击试验,通过显微硬度和残余应力测试验证了“残余应力洞”的存在,并分析了激光功率密度和强化次数等参数对“残余应力洞”现象的影响。为了抑制“残余应力洞”对强化均匀性的影响,以TC17为对象,优化光斑搭接工艺并开展多遍强化试验,结果表明,与单个光斑强化相比,同样激光参数下,采用特殊光斑搭接和多遍强化可以有效抑制圆光斑残余应力洞现象,提高强化效果均匀性,残余应力和显微硬度平均值分别提高60 MPa和30 HV0.2,极值差分别降低了70 MPa和94 HV0.2。
Abstract
In laser shock processing with circular laser spot, reverse plastic loading originating from the boundary of unaffected area will result in “residual stress hole” phenomenon. The “residual stress hole” phenomenon is proved by microhardness and residual stress test results of titanium alloy TC17, stainless steel 1Cr11Ni2W2MoV, aluminium alloy LY2 and Ni-based alloy K417 processed with single circular laser spot. Especially, the received effect laws of laser power density and impact times to “residual stress hole” phenomenon are studied. In order to reduce the influence of “residual stress hole” on the uniformity of strengthening, titanium alloy TC17 is chosen to study the optimized overlap rate and impact times. Results show that compared with single spot processing, with the same parameters, appropriate overlap rate and impact times could efficiently restrain the effect of “residual stress hole”. Particularly, with the overlap rate of 66% and impact times of three, the average value of microhardness and residual stress are increased by 60 MPa and 30 HV0.2, and the differences are reduced by 70 MPa and 94 HV0.2, respectively.

薛彦庆, 周鑫, 李应红, 赖志林. 激光冲击强化“残余应力洞”测试验证及抑制方法研究[J]. 激光与光电子学进展, 2012, 49(12): 121405. Xue Yanqing, Zhou Xin, Li Yinghong, Lai Zhilin. Validation and Restraint of “Residual Stress Hole” Produced by Laser Shock Processing[J]. Laser & Optoelectronics Progress, 2012, 49(12): 121405.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!