光学学报, 2013, 33 (2): 0230001, 网络出版: 2012-12-05   

高光谱像面干涉的近场成像机理研究

Near-Field Mechanism Research on Hyperspectral Image Plane Interferometric Imaging
作者单位
南京理工大学电子工程与光电技术学院, 江苏 南京 210094
摘要
像面干涉成像光谱技术具有高光通量、高目标分辨率、高光谱分辨率等优点,主要应用于遥感光谱成像领域。为实现近场目标的探测,对近场像面干涉成像进行了理论分析,研究了成像质量的影响因素,计算了干涉光程差和最小可探测距离。研究了近场干涉图像中条纹调制度的影响因素,推导了调制度的物理表达式,并分析了干涉条纹调制度对信噪比以及复原光谱准确度的影响。为提高近场干涉图像的调制度和成像质量,提出了一种基于二次成像的像面干涉成像光谱方法。搭建了像面干涉成像光谱的实验装置,对近场目标进行了探测,并对获取的干涉图像进行了分析;利用二次成像的像面干涉成像光谱方法,对近场目标进行干涉成像实验,获取了调制度较高的近场干涉图像。
Abstract
The technology of image plane interferometric imaging has the advantages of high luminous flux, high target resolution and high spectral resolution. It is mainly applied in remote sensing imaging field. In order to achieve the near-field target detection, the theory of near-field image plane interferometric imaging is analyzed. The factors affecting image quality is studied and the physical expressions of optical path difference and the minimum detection are described. The modulation influencing factors of near-field image plane interferometric fringe are studied and the calculation method of modulation is deduced. The impact of the interferometric fringe modulation on the signal-to-noise ratio and the accuracy of the recovery spectrum is analyzed. For improving the modulation of near-field interferometric imaging and the image quality, a re-imaging interferometric system is set up. Experimental device of imaging plane interferometric spectrometer is set up to detect the near-field targets and the experimental interferometric images are analyzed. A re-imaging experimental device is set up and we get a series of near-field target interferometric images with high modulation.

孟鑫, 李建欣, 朱日宏, 周伟, 姚良涛. 高光谱像面干涉的近场成像机理研究[J]. 光学学报, 2013, 33(2): 0230001. Meng Xin, Li Jianxin, Zhu Rihong, Zhou Wei, Yao Liangtao. Near-Field Mechanism Research on Hyperspectral Image Plane Interferometric Imaging[J]. Acta Optica Sinica, 2013, 33(2): 0230001.

本文已被 6 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!