首页 > 论文 > 激光与光电子学进展 > 57卷 > 1期(pp:11601--1)

工艺参数对等离子弧沉积316L不锈钢形貌及组织的影响

Effects of Processing Parameters on Morphology and Microstructure of Plasma Arc Deposition Using 316L Stainless Steel

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

以316L不锈钢粉末为原料,采用等离子弧沉积技术在高沉积速率下获得了致密无缺陷的单道试样。首先研究了沉积电流、扫描速度、送粉速度与沉积层高度、沉积层宽度、沉积角之间的关系,然后对沉积试样的微观组织和组成成分进行了检测与分析。结果表明:沉积角随着送粉速度的增大而增大,随着沉积电流的增大而减小;沉积角主要是锐角,有利于试样的沉积;沉积电流对沉积层宽度的影响最大,扫描速度对沉积层高度的影响最大,稀释率随着扫描速度的增大而减小,随着沉积电流的增大而增大,随送粉速度增大而减小;沉积试样成分均匀,凝固组织为奥氏体和铁素体。

Abstract

In this study, dense and defect-free specimens of a single track are fabricated at a high deposition rate using the plasma arc deposition, in which the 316L stainless steel powder is used as the deposition material. The effects of the deposition current, scanning speed, and powder feeding rate on the deposition height, width, and angle of the specimens are studied. Moreover, the microstructure and composition of the deposited samples are examined and analyzed. The results indicate that the deposition angle increases with increase in the powder feeding rate and decreases with increase in the deposition current. The deposition angles of the specimens fabricated under different deposition parameters are mainly sharp angles, which is beneficial for the deposition of the lapped samples. Among all the process parameters, the width of the single track is mostly affected by the deposition current, while its height is mostly affected by the scanning speed. The dilution rate decreases under a higher scanning speed, lower deposition current, or higher powder feeding rate. The composition distribution of the deposition specimens is uniform. The solidified microstructure comprises austenite and ferrite phases.

广告组6 - 调制器
补充资料

中图分类号:TG661

DOI:10.3788/LOP57.011601

所属栏目:材料

基金项目:国家重点研发计划;

收稿日期:2019-05-10

修改稿日期:2019-07-02

网络出版日期:2037-01-01

作者单位    点击查看

尚晓峰:沈阳航空航天大学机电工程学院,辽宁 沈阳 110136
李世硕:沈阳航空航天大学机电工程学院,辽宁 沈阳 110136中国科学院沈阳自动化研究所,辽宁 沈阳 110016
王志国:中国科学院沈阳自动化研究所,辽宁 沈阳 110016中国科学院机器人与智能制造创新研究院, 辽宁 沈阳 110169
赵吉宾:中国科学院沈阳自动化研究所,辽宁 沈阳 110016中国科学院机器人与智能制造创新研究院, 辽宁 沈阳 110169
赵宇辉:中国科学院沈阳自动化研究所,辽宁 沈阳 110016中国科学院机器人与智能制造创新研究院, 辽宁 沈阳 110169
何振丰:沈阳航空航天大学机电工程学院,辽宁 沈阳 110136
聂长武:沈阳航空航天大学机电工程学院,辽宁 沈阳 110136

联系人作者:王志国(wangzhiguo@sia.cn); 赵宇辉(yhzhao@sia.cn);

备注:国家重点研发计划;

【1】Cheng X N, Dai Q X. Austenite design and control[M]. Beijing: National Defense Industry Press, 2005, 4-5.
程晓农, 戴起勋. 奥氏体钢设计与控制[M]. 北京: 国防工业出版社, 2005, 4-5.

【2】Duan X X, Gao S Y, Gu Y F, et al. Study on reinforcement mechanism and frictional wear properties of 316L-SiC mixed layer deposited by laser cladding [J]. Chinese Journal of Lasers. 2016, 43(1): 0103004.
段晓溪, 高士友, 顾勇飞, 等. 激光熔覆316L+SiC的强化机制和摩擦磨损性能研究 [J]. 中国激光. 2016, 43(1): 0103004.

【3】Raj B, Mudali U K. Materials development and corrosion problems in nuclear fuel reprocessing plants [J]. Progress in Nuclear Energy. 2006, 48(4): 283-313.

【4】Schwendner K I, Banerjee R, Collins P C, et al. Direct laser deposition of alloys from elemental powder blends [J]. Scripta Materialia. 2001, 45(10): 1123-1129.

【5】Pu Y S, Wang B Q, Zhang L G. Metal 3D printing technology [J]. Surface Technology. 2018, 47(3): 78-84.
蒲以松, 王宝奇, 张连贵. 金属3D打印技术的研究 [J]. 表面技术. 2018, 47(3): 78-84.

【6】Kamath C, El-Dasher B, Gallegos G F, et al. Density of additively-manufactured, 316L SS parts using laser powder-bed fusion at powers up to 400 W [J]. The International Journal of Advanced Manufacturing Technology. 2014, 74: 65-78.

【7】Yadroitsev I, Smurov I. Selective laser melting technology: from the single laser melted track stability to 3D parts of complex shape [J]. Physics Procedia. 2010, 5: 551-560.

【8】Laohaprapanon A, Jeamwatthanachai P, Wongcumchang M, et al. 2011, 341/342: 816-820.

【9】Liu Y B, Sun Q J, Jiang Y L, et al. 35(7): 1-4, Ⅰ . 2014.
刘一搏, 孙清洁, 姜云禄, 等. 35(7): 1-4, Ⅰ [J]. . 基于冷金属过渡技术快速成形工艺. 焊接学报. 2014.

【10】Martina F, Mehnen J, Williams S W, et al. Investigation of the benefits of plasma deposition for the additive layer manufacture of Ti-6Al-4V [J]. Journal of Materials Processing Technology. 2012, 212(6): 1377-1386.

【11】Luo Z, Zhang Y. 4): 13-16, Ⅰ [J]. Jia P. Additive manufacturing of Ti-6Al-4V titanium alloy parts based on micro-plasma arc surfacing. Welding & Joining. 2016.
罗震, 张禹, 贾鹏. 4): 13-16, Ⅰ [J]. . Ti-6Al-4V钛合金微束等离子弧堆焊增材制造工艺研究. 焊接. 2016.

【12】Bai J Y, Fan C L, Yang Y C, et al. -Al thin-walled parts produced by shaped metal deposition [J]. Transactions of the China Welding Institution, 2016, 37(6): 124-128, Ⅵ. 2219.
柏久阳, 范成磊, 杨雨晨, 等. 铝合金 TIG 填丝堆焊成形薄壁试样组织特征 [J]. 焊接学报, 2016, 37(6): 124-128, Ⅵ. 2219.

【13】Mok S H, Bi G J, Folkes J, et al. Deposition of Ti-6Al-4V using a high power diode laser and wire, part I: investigation on the process characteristics [J]. Surface and Coatings Technology. 2008, 202(16): 3933-3939.

【14】Smurov I, Doubenskaia M, Zaitsev A. Comprehensive analysis of laser cladding by means of optical diagnostics and numerical simulation [J]. Surface and Coatings Technology. 2013, 220: 112-121.

【15】Pan H, Zhao J F, Liu Y L, et al. Controllability research on dilution ratio of nickel-based superalloy by laser cladding reparation [J]. Chinese Journal of Lasers. 2013, 40(4): 0403007.
潘浒, 赵剑峰, 刘云雷, 等. 激光熔覆修复镍基高温合金稀释率的可控性研究 [J]. 中国激光. 2013, 40(4): 0403007.

【16】Yu J, Chen J, Tan H, et al. Effect of process parameters in the laser rapid forming on deposition layer [J]. Chinese Journal of Lasers. 2007, 34(7): 1014-1018.
于君, 陈静, 谭华, 等. 激光快速成形工艺参数对沉积层的影响 [J]. 中国激光. 2007, 34(7): 1014-1018.

【17】Guo W, Li K K, Chai R X, et al. Numerical simulation and experiment of dilution effect in laser cladding 304 stainless steel [J]. Laser & Optoelectronics Progress. 2019, 56(5): 051402.
郭卫, 李凯凯, 柴蓉霞, 等. 激光熔覆304不锈钢稀释效应的数值模拟与实验 [J]. 激光与光电子学进展. 2019, 56(5): 051402.

【18】Chen G, Li X F, Zuo D W, et al. Simulation on substrate relative dilution ratio for GH4033 [J]. Laser & Optoelectronics Progress. 2011, 48(1): 011601.
陈刚, 黎向锋, 左敦稳, 等. GH4033基材相对稀释率的仿真研究 [J]. 激光与光电子学进展. 2011, 48(1): 011601.

【19】Katayama S, Fujimoto T, Matsunawa A. Correlation among solidification process, microstructure, microsegregation and solidification cracking susceptibility in stainless steel weld metals (materials, metallurgy & weldability) [J]. Transactions of JWRI. 1985, 14(1): 123-138.

【20】Schaeffler A L. Constitution diagram for stainless steel weld metal [J]. Metal Progress. 1949, 56(11): 680.

【21】Zhang B C, Dembinski L, Coddet C. The study of the laser parameters and environment variables effect on mechanical properties of high compact parts elaborated by selective laser melting 316L powder [J]. Materials Science and Engineering: A. 2013, 584: 21-31.

【22】Elmer J W, Allen S M, Eagar T W. Microstructural development during solidification of stainless steel alloys [J]. Metallurgical Transactions A. 1989, 20(10): 2117-2131.

【23】Chen X H, Li J, Cheng X, et al. Microstructure and mechanical properties of the austenitic stainless steel 316L fabricated by gas metal arc additive manufacturing [J]. Materials Science and Engineering: A. 2017, 703: 567-577.

引用该论文

Shang Xiaofeng,Li Shishuo,Wang Zhiguo,Zhao Jibin,Zhao Yuhui,He Zhenfeng,Nie Changwu. Effects of Processing Parameters on Morphology and Microstructure of Plasma Arc Deposition Using 316L Stainless Steel[J]. Laser & Optoelectronics Progress, 2020, 57(1): 011601

尚晓峰,李世硕,王志国,赵吉宾,赵宇辉,何振丰,聂长武. 工艺参数对等离子弧沉积316L不锈钢形貌及组织的影响[J]. 激光与光电子学进展, 2020, 57(1): 011601

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF