光学学报, 2013, 33 (5): 0526002, 网络出版: 2013-05-07   

传统二维电子气与石墨烯中的光电导谱

Optical Conductivity Spectrum in a Conventional Two-Dimensional Electron Gas and Graphene
作者单位
1 南京信息工程大学物理与光电工程学院, 江苏 南京 210044
2 中国科学院苏州纳米技术与纳米仿生研究所纳米器件及相关材料研究部, 江苏 苏州 215123
摘要
单层石墨烯是在室温下能存在的二维电子气,由于其线性色散关系与传统二维电子气相区别,在光、电、磁等多方面(如室温量子霍尔效应、高迁移率、高热导率和最小电导率等)表现出不同的输运行为,使其在微电子和透明导电膜方面有巨大的应用前景。采用在无规相近似下的介电函数来分析两类二维电子气系统中的光电导谱的异同。结果表明,包含两支能谱的体系中带间的跃迁对光电导起主要贡献,而两体系中带内的跃迁对光导的贡献很小。光谱的形状依赖于费米能级和由散射引起的能级展宽。当入射光的能量远高于2EF时,光电导趋于一常数,与实验结果一致。
Abstract
Monolayer graphene is a two dimensional electron gas (2DEG) which is obtained at room temperature. The optical, electrical and magnetic transport properties (e.g., room temperature quantum Hall effect, high mobility, high thermal conductivity, minimum conductivity, etc.) in graphene represent different transport behaviors for the difference of it′s linear dispersion relation and that of traditional 2DEG. This graphene material has huge potential applications in microelectronics and transparent conductive films. The dielectric function under the random phase approximation (RPA) is employed to evaluate the optical conductivity in the traditional 2DEG and the graphene system. It is found that the main optical conductivity is induced by the inter-band transition with two-branch energy spectrum, while the contribution by the intra-band transition is very small. The shape of the conductivity spectrum depends on the Fermi energy and the broadening width which is determined by the scattering mechanism. When the optical energy is larger than 2EF, the optical conductivity tends to a constant which is consistent with the experimental result.

杨翠红, 魏相飞, 罗媛, 刘立伟. 传统二维电子气与石墨烯中的光电导谱[J]. 光学学报, 2013, 33(5): 0526002. Yang Cuihong, Wei Xiangfei, Luo Yuan, Liu Liwei. Optical Conductivity Spectrum in a Conventional Two-Dimensional Electron Gas and Graphene[J]. Acta Optica Sinica, 2013, 33(5): 0526002.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!