首页 > 论文 > 中国激光 > 40卷 > 6期(pp:601002--1)

2.0 μm掺铥超短脉冲光纤激光器研究进展及展望

Progress and Prospect on Ultrafast Tm-Doped Fiber Lasers at 2 μm Wavelength

王璞   刘江  
  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

2.0 μm掺铥脉冲光纤激光器在人眼安全雷达、激光医疗、光电对抗以及特殊材料加工等领域具有重要应用,近年来成为新型光纤激光源研究的热点。对国内外2.0 μm掺铥超短脉冲光纤激光器的研究进展进行了归纳与总结,内容包括: 实现掺铥超短激光脉冲振荡输出的技术手段;新型被动锁模可饱和吸收材料,被动锁模掺铥光纤激光输出的性能及优劣;高功率掺铥超短脉冲光纤放大器的最新研究进展等。技术手段涉及主动锁模、非线性偏振演化锁模、可饱和吸收体锁模和非线性放大环镜锁模。新型可饱和吸收材料主要包括半导体、碳纳米管、石墨烯以及氧化石墨烯等。本课题组最新研究结果表明高功率掺铥超短脉冲光纤放大器的平均输出功率可达80 W,激光脉冲宽度为20 ps,激光中心波长为1963 nm。对此类超短脉冲光纤激光器的进一步发展及应用给予了展望。

Abstract

Thulium-doped pulsed fiber lasers have attracted considerable interests as novel laser source, due to their wide applications in eye-safe lidar, laser medical system, optoelectronic countermeasure and special material processing. The research and development on ultrafast thulium-doped fiber laser at 2 μm wavelength are classified, which include the technical approach of the ultrafast thuliun doped pulse output, the novel saturable absorbers of passive mode-locking, the characteristics of thulium-doped passively mode-locked fiber laser output, and the development of high power thulium-doped ultrafast pulse amplifier. Up to now, several main mode-locked techniques, such as actively mode-locking, nonlinear polarization evolution, saturable absorber, and nonlinear amplifier loop mirror have been used to achieve ultrashort laser pulses in thulium-doped fiber lasers. The saturable absorber material mainly include semiconductor, carbon nanotubes, graphene and graphene oxide. The most recent work shows that 80 W average power at 1963 nm has been obtained in a three-stage fiber amplifier with pulse width of 20 ps. The prospect of further development and application of such ultrafast laser sources is discussed in the last part of the article.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN248

DOI:10.3788/cjl201340.0601002

所属栏目:综述

责任编辑:宋梅梅  信息反馈

基金项目:国家自然科学基金重点项目(61235010)、国家自然科学基金面上项目(61177048)和北京市自然科学基金B类重点项目(KZ2011100050011)资助课题。

收稿日期:2013-04-09

修改稿日期:2013-05-03

网络出版日期:--

作者单位    点击查看

王璞:北京工业大学激光工程研究院国家产学研激光技术中心, 北京 100124
刘江:北京工业大学激光工程研究院国家产学研激光技术中心, 北京 100124

联系人作者:王璞(wangpuemail@bjut.edu.cn)

备注:王璞(1965-),男,教授,博士生导师,主要从事光纤激光器、光纤放大器及新型光纤光学功能性器件等方面的研究。

【1】M. Eckerle, C. Kieleck, J. widerski et al.. Actively Q-switched and mode-locked Tm3+-doped silicate 2 μm fiber laser for supercontinuum generation in fluoride fiber[J]. Opt. Lett., 2012, 37(4): 512~514

【2】D. Buccoliero, H. Steffensen, O. Bang et al.. Thulium pumped high power supercontinuum in loss-determined optimum lengths of tellurite photonic crystal fiber[J]. Appl. Phys. Lett., 2010, 97(6): 061106

【3】C. R. Phillips, Carsten Langrock, J. S. Pelc et al.. Supercontinuum generation in quasi-phase-matched LiNbO3 waveguide pumped by a Tm-doped fiber laser system[J]. Opt. Lett., 2011, 36(19): 3912~3914

【4】O. P. Kulkarni, V. V. Alexander, M. Kumar et al.. Supercontinuum generation from ~1.9 to 4.5 μm in ZBLAN fiber with high average power generation beyond 3.8 μm using a thulium-doped fiber amplifier[J]. J. Opt. Soc. Am. B, 2011, 28(10): 2486~2498

【5】Y. Tang, C. Huang, S. Wang et al.. High-power narrow-bandwidth thulium fiber laser with an all-fiber cavity[J]. Opt. Express, 2012, 20(16):17539~17544

【6】Z. Yunjun, Y. Baoquan, J. Youlun et al.. LD-cladding-pumped 50 pm linewidth Tm3+-doped silica fiber laser[J]. Opt. Express, 2008, 16(11): 7715~7719

【7】F. Wang, D. Shen, D. Fan et al.. Spectrum narrowing of high power Tmfiber laser using a volume Bragg grating[J]. Opt. Express, 2010, 18(9): 8937~8941

【8】S. D. Jackson, Terence A. King. High-power diode-cladding-pumped Tm-doped silica fiber laser[J]. Opt. Lett., 2008, 23(18): 1462~1464

【9】P. F. Moulton, G. A. Rines, E. Slobodtchikov et al.. Tm-doped fiber lasers: fundamentals and power scaling[J]. IEEE J. Sel. Top. Quantum Electron., 2009, 15(1): 85~92

【10】Thomas Ehrenreich, Ryan Leveille, Imtiaz Majid et al.. 1-kW, all-glass Tm fiber laser[C]. SPIE, 2010, 7580: 16

【11】Liu Jiang,Wang Pu. High-power narrow-bandwidth continuous wave thulium-doped all-fiber laser[J]. Chinese J. Lasers, 2013, 40(1): 0102001
刘江,王璞. 高功率窄线宽全光纤结构掺铥连续光纤激光器[J]. 中国激光, 2013, 40(1): 0102001

【12】G. D. Goodno, L. D. Book, J. E. Rothenberg. Low-phase-noise, single-frequency, single-mode 608 W thulium fiber amplifier[J]. Opt. Lett., 2009, 34(8): 1204~1206

【13】P. Hübner, C. Kieleck, Stuart D. Jackson et al.. High-power actively mode-locked sub-nanosecond Tm3+-doped silica fiber laser[J]. Opt. Lett., 2011, 36(13): 2483~2485

【14】L. E. Nelson, E. P. Ippen, H. A. Haus. Broadly tunable sub-500 fs pulses from an additive-pulse mode-locked thulium-doped fiber ring laser[J]. Appl. Phys. Lett., 1995, 67(1): 19~21

【15】W. Renard, G. Canat, P. Bourdon. 26 nJ picosecond solitons from thulium-doped single-mode master oscillator power fiber amplifier[J]. Opt. Lett., 2012, 37(3): 377~379

【16】M. Engelbrecht, F. Haxsen, A. Ruehl et al.. Ultrafast thulium-doped fiber-oscillator with pulse energy of 4.3 nJ[J]. Opt. Lett., 2008, 33(7): 690~692

【17】F. Haxsen, A. Ruehl, M. Engelbrecht et al.. Stretched-pulse operation of a thulium-doped fiber laser[J]. Opt. Express, 2008, 16(25): 20471~20476

【18】F. Haxsen, D. Wandt, U. Morgner et al.. Pulse characteristics of a passively mode-locked thulium fiber laser with positive and negative cavity dispersion[J]. Opt. Express, 2010, 18(18): 18981~18988

【19】F. Haxsen, D. Wandt, U. Morgner et al.. Pulse energy of 151 nJ from ultrafast thulium-doped chirped-pulse fiber amplifier[J]. Opt. Lett., 2010, 35(17): 2991~2993

【20】F. Haxsen, D. Wandt, U. Morgner et al.. Monotonically chirped pulse evolution in an ultrashort pulse thulium-doped fiber laser[J]. Opt. Lett., 2012, 37(6): 1014~1016

【21】A. Wienke, F. Haxsen, D. Wandt et al.. Ultrafast, stretched-pulse thulium-doped fiber laser with a fiber-based dispersion management[J]. Opt. Lett., 2012, 37(13): 2466~2468

【22】Q. Wang, T. Chen, B. Zhang et al.. All-fiber passively mode-locked thulium-doped fiber ring oscillator operated at solitary and noiselike modes[J]. Opt. Lett., 2011, 36(19): 3750~3752

【23】Q. Wang, J. Geng, T. Luo et al.. Mode-locked 2 μm laser with highly thulium-doped silicate fiber[J]. Opt. Lett., 2009, 34(23): 3616~3618

【24】Q. Wang, J. Geng, Z. Jiang et al.. Mode-locked Tm-Ho-codoped fiber laser at 2.06 μm[J]. IEEE Photon. Technol. Lett., 2011, 23(11): 682~684

【25】S. Kivist, T. Hakulinen, M. Guina et al.. Tunable Raman soliton source using mode-locked Tm-Ho fiber laser[J]. IEEE Photon. Technol. Lett., 2007, 19(12): 934~936

【26】S. Kivisto, O.G. Okhotnikov. 600-fs mode-locked Tm-Ho-doped fiber laser synchronized to optical clock with optically driven semiconductor saturable absorber[J]. IEEE Photon. Technol. Lett., 2011, 23(8): 477~479

【27】R. Gumenyuk, I. Vartiainen, H. Tuovinen et al.. Dissipative dispersion-managed soliton 2 μm thulium/holmium fiber laser[J]. Opt. Lett., 2011, 36(5): 609~611

【28】R. Gumenyuk, M. S. Gaponenko, K. V. Yumashev et al.. Vector soliton bunching in thulium-holmium fiber laser mode locked with PbS quantum-dot-doped glass absorber[J]. IEEE J. Quantum Electron., 2012, 48(7): 903~907

【29】刘江,曹镱,王璞. 全光纤结构被动锁模2 μm掺铥光纤激光器[J]. 中国激光,2011, 38(9): 0905007-7

【30】Liu Jiang, Wang Pu. High-power passively mode-locked thulium-doped femtosecond fiber laser at 2.0 μm[J]. Chinese J. Lasers, 2012, 39(9): 0902001
刘江,王璞. 高功率被动锁模2.0 μm掺铥飞秒脉冲光纤激光器[J]. 中国激光, 2012, 39(9): 0902001

【31】J. Liu, P. Wang. High-energy near transform-limited pulses from an ultrafast thulium-doped all-fiber MOPA[J]. IEEE Photon. Technol. Lett., 2012, 24(16): 1384~1386

【32】Liu Jiang, Xu Jia, Wang Qian et al.. High-pulse-energy passively mode-locked 2.0 μm thulium-doped ultrafast all-fiber laser[J]. Chinese J. Lasers, 2012, 39(6): 0602009
刘江,徐佳,王潜 等. 高能量全光纤结构被动锁模2.0 μm掺铥超短脉冲光纤激光器[J]. 中国激光, 2012, 39(6): 0602009

【33】Liu Jiang, Wang Pu. 2 μm thulium-doped ultrafast all-fiber laser with watts-level average output power[J]. Chinese J. Lasers, 2012, 39(8): 0802004
刘江,王璞. 瓦级输出全光纤结构2.0 μm掺铥皮秒脉冲光纤激光器[J]. 中国激光, 2012, 39(8): 0802004

【34】刘江,王潜,王璞. 20 W全光纤结构掺铥皮秒脉冲光纤激光器[J]. 中国激光, 2012, 39(6): 0610001-5

【35】M. A. Solodyankin, E. D. Obraztsova, A. S. Lobach et al.. Mode-locked 1.93 μm thulium fiber laser with a carbon nanotube absorber[J]. Opt. Lett., 2008, 33(12): 1336~1338

【36】K. Kieu, F. W. Wise. Soliton thulium-doped fiber laser with carbon nanotube saturable absorber[J]. IEEE Photon. Technol. Lett., 2009, 21(3): 128~130

【37】S. Kivist, T. Hakulinen, A. Kaskela et al.. Carbon nanotube films for ultrafast broadband technology[J]. Opt. Express, 2009, 17(4): 2358~2363

【38】Q. Fang, K, Kieu, N. Peyghambarian. An all-fiber 2 μm wavelength-tunable mode-locked laser[J]. Photon. Technol. Lett., 2010, 22(15): 1656~1658

【39】M. Zhang, E. J. R. Kelleher, F. Torrisi et al.. Tm-doped fiber laser mode-locked by graphene-polymer composite[J]. Opt. Express, 2012, 20(22): 25077~25084

【40】D. I. M. Zen, N. Saidin, S. S. A. Damanhuri et al.. Mode-locked thulium-bismuth codoped fiber laser using graphene saturable absorber in ring cavity[J]. Appl. Opt., 2013, 52(6): 1226~1229

【41】刘江, 吴思达,徐佳 等. 基于氧化石墨烯锁模的2 μm掺铥超短脉冲光纤激光器[J]. 中国激光, 2012, 39(3): 0310001-7

【42】J. Liu, S. Wu, J. Xu et al.. Mode-locked 2 μm thulium-doped fiber laser with graphene oxide saturable absorber[C]. CLEO: QELS-Fundamental Science, 2012. JW2A. 76.

【43】M. Jung, J. Koo, P. Debnath et al.. A mode-locked 1.91 μm fiber laser based on interaction between graphene oxide and evanescent field[J]. Appl. Phys. Express, 2012, 5: 112702~112704

【44】M. A. Chernysheva, A. A. Krylov, P. G. Kryukov et al.. Nonlinear amplifying loop-mirror-based mode-locked thulium-doped fiber laser[J]. IEEE Photon. Technol. Lett., 2012, 24(14): 1254~1256

【45】M. A. Chernysheva, A. A. Krylov, P. G. Kryukov et al.. Thulium-doped mode-locked all-fiber laser based on NALM and carbon nanotube saturable absorber[J]. Opt. Express, 2012, 20(26), B124~B130

【46】C. Rudy, M. Digonnet, R. Byer et al.. Thulium-doped germanosilicate mode-locked fiber lasers[C]. Fiber Laser Applications, 2012. FTh4A.4

【47】J. Liu, Q. Wang, P. Wang. High average power picosecond pulse generation from a thulium-doped all-fiber MOPA system[J]. Opt. Express, 2012, 20(20): 22442~22447

【48】R. A. Sims, P. Kadwani, A. S. L. Shah et al.. 1 μJ, sub-500 fs chirped pulse amplification in a Tm-doped fiber system[J]. Opt. Lett., 2013, 38(2): 121~123

【49】L. M. Yang, P. Wan, V. Protopopov et al.. 2 μm femtosecond fiber laser at low repetition rate and high pulse energy[J]. Opt. Express, 2012, 20(5): 5683~5688

【50】P. Wan, L. M. Yang, J. Liu. High pulse energy 2 μm femtosecond fiber laser[J]. Opt. Express, 2013, 21(2): 1798~1803

【51】P. Wan, L. M. Yang, J. Liu. 156 micro-J ultrafast thulium-doped fiber laser[C]. SPIE, 2013, 8601: 860138

【52】J. Jiang, C. Mohr, J. Bethge et al.. 500 MHz, 58 fs highly coherent Tm fiber soliton laser[C]. CLEO: Applications and Technology, 2012. CTh5D.7

【53】刘江,王璞. 850 MHz高重复频率、窄线宽被动锁模皮秒脉冲光纤激光器[J]. 中国激光, 2011, 38(9): 0908009-6

【54】J. Liu, J. Xu, P. Wang. High repetition-rate narrow bandwidth SESAM mode-locked Yb-doped fiber lasers[J]. IEEE Photon. Technol. Lett., 2012, 24(7): 539~541

【55】Q. L. Bao, H. Zhang, Y. Wang et al.. Atomic layer graphene as saturable absorber for ultrafast pulsed laser[J]. Advanced Functional Materials, 2009, 19(19): 3077~3083

【56】H. Zhang, D. Y. Tang, Z. M. Zhao et al.. Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene[J]. Opt. Express, 2009, 17(20): 17630~17635

【57】Z. Sun, T. Hasan, F. Bonaccorso et al.. Graphene mode-locked ultrafast laser[J]. ACS Nano, 2010, 4(2): 803~810

【58】F. Bonaccorso, Z. Sun, T. Hasan et al.. Graphene photonics and optoelectronics[J]. Nature Photonics, 2010, 4(9): 611~622

【59】Liu Jiang, Wu Sida, Wang Ke et al.. Passively mode-locked and Q-switched Yb-doped fiber lasers with graphene-based saturable absorber[J]. Chinese J. Lasers, 2011, 38(8): 0802001
刘江,吴思达,王科 等. 基于石墨烯可饱和吸收体的被动锁模、被动调Q掺镱光纤激光器[J]. 中国激光, 2011, 38(8): 0802001

【60】刘江,王璞. 2.0 μm石墨烯被动调Q掺铥全光纤激光器[J]. 中国激光, 2011, 38(10): 1008004-6

【61】J. Liu, J. Xu, P. Wang. Graphene-based passively Q-switched 2 μm thulium-doped fiber laser[J]. Opt. Commun., 2012, 285(24): 5319~5322

【62】A. Chamorovskiy, A. V. Marakulin, S. Ranta et al.. Femtosecond mode-locked holmium fiber laser pumped by semiconductor disk laser[J]. Opt. Lett., 2012, 37(9): 1448~1450

【63】J. F. Li, D. D. Hudson, Y. Liu et al.. Efficient 2.87 μm fiber laser passively switched using a semiconductor saturable absorber mirror[J]. Opt. Lett., 2012, 37(18): 3747~3749

【64】C. Wei, X. Zhu, R. A. Norwood et al.. Passively continuous-wave mode-locked Er3+-doped ZBLAN fiber laser at 2.8 μm[J]. Opt. Lett., 2012, 37(18): 3849~3851

引用该论文

Wang Pu,Liu Jiang. Progress and Prospect on Ultrafast Tm-Doped Fiber Lasers at 2 μm Wavelength[J]. Chinese Journal of Lasers, 2013, 40(6): 0601002

王璞,刘江. 2.0 μm掺铥超短脉冲光纤激光器研究进展及展望[J]. 中国激光, 2013, 40(6): 0601002

被引情况

【1】李林军,张治国,白云峰,杨曦凝. 2 μm波段Tm,Ho:YAlO3激光器研究进展及展望. 激光与光电子学进展, 2014, 51(7): 70003--1

【2】王泽锋,于飞,William J Wadsworth,Jonathan C Knight. 单程高增益1.9 μm光纤气体拉曼激光器. 光学学报, 2014, 34(8): 814004--1

【3】孙若愚,金东臣,曹镱,王璞. 百瓦级1030 nm皮秒脉冲掺镱全光纤激光器. 中国激光, 2014, 41(10): 1002004--1

【4】王雄,周朴,王小林,肖虎,司磊,刘泽金. 混合抽运和增益开关铥/钬共掺脉冲光纤激光器对比研究. 中国激光, 2014, 41(3): 302010--1

【5】李林军,杨曦凝,白云峰,张治国. 激光二极管抽运10.5 W c轴切割Tm,Ho:YAP连续激光器的研究. 激光与光电子学进展, 2014, 51(5): 51403--1

【6】沈炎龙,黄珂,周松青,栾昆鹏,朱峰,谌鸿伟,于力,易爱平,冯国斌,叶锡生. 10 W 级高效率单模中红外2.8 μm光纤激光器. 中国激光, 2015, 42(5): 502008--1

【7】朱国利. 高重频Ho:YAG激光器转换效率理论分析与计算. 中国激光, 2015, 42(8): 802014--1

【8】施伟华,王梦艳. 三零色散光子晶体光纤中超连续谱的产生与控制. 中国激光, 2015, 42(8): 805009--1

【9】叶斌,戴世勋,刘自军,焦清,许银生,王训四,沈祥,聂秋华. 2.7 μm 掺Er3+∶ZBLAN光纤激光器的研究进展. 激光与光电子学进展, 2015, 52(9): 90004--1

【10】杨光,楼嘉昌,韩达明,王振洪,王志,刘艳格. 基于拉锥光纤石墨烯可饱和吸收体的被动调Q锁模掺铥光纤激光器. 中国激光, 2015, 42(s1): 102014--1

【11】周冠锐,师红星,金东臣,谭方舟,刘江,王潜,王璞. 基于半导体激光器调制技术的978 nm纳秒脉冲掺镱光纤激光器. 中国激光, 2016, 43(8): 801005--1

【12】康 喆,刘明奕,刘承志,李振伟,马 磊,许 阳,秦伟平,秦冠仕. 基于微纳光纤-单壁碳纳米管可饱和吸收体的被动调Q掺镱光纤激光器. 发光学报, 2017, 38(5): 630-635

【13】刘茵紫,邢颍滨,徐中巍,李进延. 高功率掺铥石英光纤激光器研究进展. 激光与光电子学进展, 2018, 55(5): 50004--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF