应用激光, 2013, 33 (3): 272, 网络出版: 2013-08-28  

激光冲击调整5B05铝合金残余应力状态的模拟仿真

The Simulation of Laser Impinging Adjust Surface Residual Stress State of the 5B05 Aluminum Alloy
作者单位
1 江苏大学机械工程学院, 江苏 镇江 212003
2 温州大学 机电工程学院, 浙江 温州 325035
3 江苏锐成机械有限公司 江苏 无锡 214206
摘要
开展了激光冲击波调整表面残余应力(主应力)状态的模拟仿真与实验研究。以ABAQUS为平台, 建立了激光冲击5B05铝合金的有限元分析模型, 研究了激光冲击参数对5B05铝合金激光冲击处理残余应力场的影响。模拟结果表明: 随着冲击次数的增加, 表层残余压应力逐渐增大, 当冲击次数为3 次时, 增加并不明显, 说明表面峰值残余压应力趋于饱和; 在冲击压力一定的条件下, 表面残余应力随光斑直径增大而增大, 半径增加至一定程度后表面峰值残余压应力增幅会达到最小, 基本保持不变。通过实验与模拟结果对比发现, 尽管实验值与模拟结果存在一定的误差, 但总体趋势一致, 说明建立有限元模拟模型结构有效可行。
Abstract
This paper provided both the simulation and experiment results of the laser shock adjust surface residual stress (principal stress) state. Based on ABAQUS, we established the finite element analysis model of laser impinging on 5b05 aluminum alloy, and studied the relationship between different laser shock parameters and alloy’s surface residual stress state. The simulation results show that with the increase of the number of shocks the surface residual stress rise gradually. When the number of shocks is 3, the residual stress did not rise obviously. This indicates that the surface residual stress is becoming saturated. When shock pressure is constant, the surface residual stress rise with spot diameter, when the Radius of light spot increased to a certain degree the growing rate of surface peak residual compressive stress could reach minimum and stay almost constant. Compare the results of experiment and simulation we found that although the experimental value and the simulation results has certain error, the trend is almost the same, this illustrate that the model we have established is available.

卢轶, 冯爱新, 薛伟, 韩振春, 孙淮阳, 施芬, 李彬, 陈风国. 激光冲击调整5B05铝合金残余应力状态的模拟仿真[J]. 应用激光, 2013, 33(3): 272. 卢轶, 冯爱新, 薛伟, 韩振春, 孙淮阳, 施芬, 李彬, 陈风国. The Simulation of Laser Impinging Adjust Surface Residual Stress State of the 5B05 Aluminum Alloy[J]. APPLIED LASER, 2013, 33(3): 272.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!