光散射学报, 2012, 24 (4): 361, 网络出版: 2014-01-21  

偏振拉曼散射研究ZnO单晶纳米压痕区内的晶格畸变分布

Polarized Micro-Raman Study of the Nanoindentation-Induced Lattice Deformation in ZnO Single Crystal
作者单位
北京工业大学激光工程研究院, 北京 100124
摘要
通过结合纳米压痕和偏振拉曼散射技术对压应力影响下ZnO单晶晶格出现的变化进行了研究。位错的滑移是导致ZnO单晶中出现多处塑性变形的原因而非相变。之后采用偏振拉曼Mapping成像技术以E2(high)模为对象, 监视其在整个压痕区内的强度变化分布。在压痕区中心累积的应力通过位错的滑移而释放, 同时导致压痕区中心处的晶格畸变程度最为严重。伴随着晶格失配的加剧, 拉曼选择定则放宽, 在Z(XX)配置下较弱的LO得到增强, 原本非拉曼活性的B1(high)模出现。此外, 在Z(XY)偏振下压痕区左侧的拉曼光谱中观察到位于130 cm-1处的拉曼异常振动模。此峰的出现可能与压痕区左侧由刃位错所形成的应力场吸引间隙离子导致的晶格畸变有关。
Abstract
The contact-induced deformation behavior of optical phonons in ZnO single crystal (wurtzite) is investigated using a combination of nanoindentation with a Berkovich indenter and polarized Raman spectroscopy. Multiple discontinuities (“pop-in” events) in load-displacement curve were observed during indentation loading. After indentation, no evidence of a phase transformation was been observed by Raman scattering. Results show that the initiation of slip is identified as the major mode of plastic deformation in ZnO. Furthermore, based on the intensity Raman map of E2(high) mode and the pressure dependence of the phonon frequency for E2(high) mode, it reveals that the greatest deformations concentrated at the center of indentation, while the strain built up in this region has been relaxed through the slipping of contact-induced defects. The board band has been observed in Z(XX) geometry with the range from 500~600 cm-1. The appearance of the band is attributed to the lattice damages induced by compressive press, which confirms that this band is only related to the deformations of microstructure. Moreover, an Additional mode (around 130 cm-1) in Z(XY) spectrum is assigned to TA(M) and emerges due to relaxation of Raman selection rules.

刘洁, 蒋毅坚. 偏振拉曼散射研究ZnO单晶纳米压痕区内的晶格畸变分布[J]. 光散射学报, 2012, 24(4): 361. LIU Jie, JIANG Yi-jian. Polarized Micro-Raman Study of the Nanoindentation-Induced Lattice Deformation in ZnO Single Crystal[J]. The Journal of Light Scattering, 2012, 24(4): 361.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!