量子电子学报, 2014, 31 (1): 86, 网络出版: 2014-02-26   

关联噪声和周期信号驱动非对称双稳系统的稳态分析

Steady-state analysis of an asymmetric bistable system driven by cross-correlated noises with periodic signal
作者单位
长江大学物理科学与技术学院,湖北 荆州 434023
摘要
运用Liouville 方程和诺维科夫原理,解出了关联噪声和周期信号共同驱动的 非对称双稳系统的近似福克-普朗克方程,并求解了其稳态概率密度函数。在此基础上,分析了乘性噪声强度D、加性噪声强度Q、 噪声间关联系数λ, 周期信号振幅A、频率Ω以及系统非对称参数r 等对稳态概率密度分布曲线的影响。结果表明: 1)噪声强度及其关联、周期信号振幅、 系统非对称参数的改变均能引起稳态概率密度分布曲线单峰结构和双峰结构之间的转换, 即能够诱导非平衡相变产生; 2)周期信号频率改变时,没有非平衡相变发生; 3)当系统非对称参数为零时,稳态概率密度分布 曲线具有关于x=0的对称结构;当系统非对称参数不等于零时,其对称结构被破坏。
Abstract
By virtue of the Liouville equation and Novikov theorem, the approximate Fokker-Planck equation was derived, and the analytic expression of the stationary probability distribution (SPD) was obtained in an asymmetric bistable system driven by cross-correlated multiplicative white noise and additive white noise with periodic signal. Based on the computed results, effects of the following parameters, including intensity of noises and their correlation, the amplitude and frequency of the periodic signal, and the asymmetric parameter of system on the SPD were investigated. Numerical results show that: 1) The intensity of noises and their correlation, amplitude of periodic signal, and asymmetric parameter of the system can induce the SPD transition from bimodal to unimodal in structure, i.e., a non-equilibrium phase transition is generated. 2) There is no non-equilibrium phase transition as frequency of the periodic signal varies. 3) The structure of the SPD exhibits a symmetrical structure at x=0 in the case of r=0, while the symmetry of SPD at x=0 is destroyed if the asymmetric parameter of the system r≠0.

王国威, 程庆华, 徐大海. 关联噪声和周期信号驱动非对称双稳系统的稳态分析[J]. 量子电子学报, 2014, 31(1): 86. WANG Guo-wei, CHENG Qing-hua, XU Da-hai. Steady-state analysis of an asymmetric bistable system driven by cross-correlated noises with periodic signal[J]. Chinese Journal of Quantum Electronics, 2014, 31(1): 86.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!