High Power Laser Science and Engineering, 2014, 2 (1): 010000e6, Published Online: Dec. 26, 2014  

Review of the current status of fast ignition research at the IAPCM Download: 596次

Author Affiliations
1 Institute of Applied Physics and Computational Mathematics, Beijing 100094, People’s Republic of China
2 Center for Applied Physics and Technology, Peking University, Beijing 100871, People’s Republic of China
Abstract
We review the present status and future prospects of fast ignition (FI) research of the theoretical group at the IAPCM (Institute of Applied Physics and Computational Mathematics, Beijing) as a part of the inertial confinement fusion project. Since the approval of the FI project at the IAPCM, we have devoted our efforts to improving the integrated codes for FI and designing advanced targets together with the experimental group. Recent FI experiments [K. U. Akli et al., Phys. Rev. E 86, 065402 (2012)] showed that the petawatt laser beam energy was not efficiently converted into the compressed core because of the beam divergence of relativistic electron beams. The coupling efficiency can be improved in three ways: (1) using a cone–wire-in-shell advanced target to enhance the transport efficiency, (2) using external magnetic fields to collimate fast electrons, and (3) reducing the prepulse level of the petawatt laser beam. The integrated codes for FI, named ICFI, including a radiation hydrodynamic code, a particle-in-cell (PIC) simulation code, and a hybrid fluid–PIC code, have been developed to design this advanced target at the IAPCM. The Shenguang-II upgraded laser facility has been constructed for FI research; it consists of eight beams (in total 24 kJ=3!, 3 ns) for implosion compression, and a heating laser beam (0.5–1 kJ, 3–5 ps) for generating the relativistic electron beam. A fully integrated FI experiment is scheduled for the 2014 project.

Hong-bo Cai, Si-zhong Wu, Jun-feng Wu, Mo Chen, Hua Zhang, Min-qing He, Li-hua Cao, Cang-tao Zhou, Shao-ping Zhu, Xian-tu He. Review of the current status of fast ignition research at the IAPCM[J]. High Power Laser Science and Engineering, 2014, 2(1): 010000e6.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!