首页 > 论文 > 光学学报 > 34卷 > 11期(pp:1110001--1)

基于压缩感知与尺度不变特征变换的图像配准算法

Image Registration Algorithm Based on Sparse Random Projection and Scale-Invariant Feature Transform

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

尺度不变特征变换(SIFT)算法是图像配准中一种用来描述局部特征最稳健,使用最广泛的方法。针对存在关键点特征描述向量维数较高,算法计算复杂的问题,提出了一种基于稀疏随机投影(SRP)与SIFT相结合的图像配准算法,该算法把压缩感知理论的稀疏特征表示概念引入SIFT算法中,即SRP-SIFT,用稀疏特征表示方法对SIFT关键点特征向量进行提取,再使用相应的L1距离度量进行特征向量的匹配。对新算法和相关SIFT算法进行了图像配准实验,实验结果表明,SRP-SIFT算法对包含复杂结构内容的图像配准性能优于传统SIFT算法,配准效率与几种改进的SIFT算法相当,但运算速度比传统SIFT算法和几种改进的SIFT算法有明显提高。

Abstract

Scale-invariant feature transform (SIFT) is one of the most robust and widely used local feature descriptor for image registration, however, the computational complexity of its key point descriptor computing stage is quite expensive and also the dimensionality of the key point feature vectors is relatively high. For speeding up the SIFT computation, a novel sparse random projection (SRP) based algorithm, namely SRP-SIFT, is proposed by combining SIFT with sparse feature representation methods from the compressive sensing theory. Accordingly, L1 norm is introduced to compute the similarity and dissimilarity between feature vectors used for image registration. The experimental results show that the proposed SRP-SIFT algorithm is much faster than the standard SIFT algorithm while the performance is favorably comparable when performing complex structured scene image registration applications.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TP391.4

DOI:10.3788/aos201434.1110001

所属栏目:图像处理

基金项目:国家自然科学基金(60972135)

收稿日期:2014-04-22

修改稿日期:2014-06-27

网络出版日期:--

作者单位    点击查看

杨飒:广东第二师范学院物理系, 广东 广州 510310
杨春玲:华南理工大学电子与信息学院, 广东 广州 510640

联系人作者:杨飒(yangsa@gdei.edu.cn)

备注:杨飒(1970—),女,硕士,高级实验师,主要从事图像处理算法方面的研究。

【1】D G Lowe. Object recognition from local scale-invariant features [C]. Proceedings of the International Conference on Computer, ICCV, 1999, 2: 1150-1157.

【2】D G Lowe. Distinctive image features from scale-invariant keypoints [J]. International Journal of Computer Vision, 2004, 60(2): 91-110.

【3】K Mikolajczyk, C Schmid. A performance evaluation of local descriptors [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(10): 1615-1630.

【4】Y Ke, R Sukthankar. PCA-SIFT: A more distinctive representation for local image descriptors [C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004, 2: 506-513.

【5】A E A Hakim, A A Farag. CSIFT : A SIFT descriptor with color invariant characteristics [C] . IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2006, 2: 1978-1983.

【6】H Bay, T Tuytelaars, L V Gool. SURF: speeded up robust features [C]. Proceedings of the ninth European Conference on Computer Vision, 2006. 404-417.

【7】G S Yu, J M Morel. ASIFT: a new framework for fully affine invariant image comparison [J]. SIAM Journal on Imaging Sciences, 2009, 2(2): 438-460.

【8】Haihua Cui, Wenhe Liao, Ning Dai, et al.. Registration and integration algorithm in structured light three-dimensional scanning based on scale-invariant feature matching of multi-source images [J]. Chin Opt Lett, 2012, 10(9): 091001.

【9】Wang Min, Liu Weiguang. Advanced algorithm based on SIFT and its application in binocular stereo vision [J]. Computer Engineering and Applications, 2013, 49(2): 203-206.
王民, 刘伟光. 基于改进SIFT特征的双目图像匹配算法[J]. 计算机工程与应用, 2013, 49(2): 203-206.

【10】E Candès, J Romberg, Terence Tao. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information [J]. IEEE Trans Information Theory, 2006, 52(2): 489-509.

【11】D Donoho. Compressed sensing [J]. IEEE Trans Information Theory, 2006, 52(4): 1289-306.

【12】Fang Hong, Zhang Quanbing, Wei sui. Method of image reconstruction based on very sparse random projection [J]. Computer Engineering and Applications, 2007, 43(22): 25-27.
方红, 章权兵, 韦穗. 基于非常稀疏随机投影的图像重建方法[J]. 计算机工程与应用, 2007, 43(22): 25-27.

【13】Ma Yanpeng, Wang Yanan, Wang Yikun, et al.. Study of single-pixel detection computational imaging technology based on compressive sensing [J]. Acta Optica Sinica, 2013, 33(12): 1211007.
马彦鹏, 王亚南, 王义坤, 等. 基于压缩感知的单点探测计算成像技术研究[J]. 光学学报, 2013, 33(12): 1211007.

【14】M Rostami, O Michailovich, Z Wang. Image deblurring using derivative compressed sensing for optical imaging application [J]. IEEE Transactions on Image Processing, 2012, 21(7): 3139-3149.

【15】Wang Jincheng, Kuang Cuifang, Wang Yifan, et al.. Multispectral fluorescence microscopic imaging based on compressive sensing [J]. Chinese J Lasers, 2013, 40(12): 1204003.
王金成, 匡翠方, 王轶凡, 等. 基于压缩感知的荧光显微多光谱成像[J]. 中国激光, 2013, 40(12): 1204003.

【16】S T Li, H T Yin, L Y Fang. Remote sensing image fusion via sparse representations over learned dictionaries [J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(9): 4779-478.

【17】Yin Wen, Li Yuanxiang, Zhou Zeming, et al.. Remote sensing image fusion based on sparse representation [J]. Acta Optica Sinica, 2013, 33(4): 0428003.
尹雯, 李元祥, 周则明, 等. 基于稀疏表示的遥感图像融合方法[J]. 光学学报, 2013, 33(4): 0428003.

【18】Xu Wei, Leng Chengcai, Yu Naigong, et al.. An equivalence graph cut method based on wavelet transform for SAR image registration [J]. Nanotechnology and Precision Engineering, 2013, 11(1): 14-19.
徐伟, 冷成财, 于乃功, 等. 基于小波变换的等价图割SAR图像配准方法[J]. 纳米技术与精密工程, 2013, 11(1): 14-19.

引用该论文

Yang Sa,Yang Chunling. Image Registration Algorithm Based on Sparse Random Projection and Scale-Invariant Feature Transform[J]. Acta Optica Sinica, 2014, 34(11): 1110001

杨飒,杨春玲. 基于压缩感知与尺度不变特征变换的图像配准算法[J]. 光学学报, 2014, 34(11): 1110001

被引情况

【1】杨飒,郑志硕. 基于稀疏随机投影的SIFT医学图像配准算法. 量子电子学报, 2015, 32(3): 283-289

【2】马丽娜,宗肖颖,李永强. 基于图像频谱的定焦分析. 光学学报, 2015, 35(7): 710002--1

【3】孔祥海,陈跃庭,李奇,冯华君,徐之海. 一种用于敏捷卫星自主任务规划的云顶高探测方法. 光学学报, 2015, 35(7): 728004--1

【4】刘威,赵文杰,李成. 一种基于压缩感知的在线学习跟踪算法. 光学学报, 2015, 35(9): 915001--1

【5】李安冬,林再平,安玮,杨林娜. 基于自适应改进的压缩域红外弱小目标检测. 中国激光, 2015, 42(10): 1008003--1

【6】柏财勋,李建欣,孟鑫,周建强,沈燕,王昊. 对称楔形干涉高光谱成像的光谱复原方法. 光学学报, 2016, 36(2): 230004--1

【7】杨飒,夏明华,郑志硕. 基于多项式确定性矩阵的SIFT医学图像配准算法. 激光与光电子学进展, 2016, 53(8): 81002--1

【8】张彪,邹哲,陈书界,沈会良,邵思杰,忻浩忠. 基于仿射变换与Levenberg-Marquardt算法的织物图像配准. 光学学报, 2017, 37(1): 133002--1

【9】路绳方,刘震. 动车组运行故障动态图像比对分析方法. 激光与光电子学进展, 2017, 54(9): 91503--1

【10】路绳方,刘 震. 动车组列车序列图像快速对齐方法. 光学学报, 2017, 37(9): 915002--1

【11】路绳方. 复杂场景下动车底部螺栓丢失故障的自动检测. 激光与光电子学进展, 2017, 54(11): 111501--1

【12】乔梦霞,熊木地,崔婷婷,李景润. 一种变焦式夜雾天彩色视频构建方法. 激光与光电子学进展, 2018, 55(12): 121008--1

【13】李佳,段平,姚永祥,程峰. 加速分割特征优化的图像配准方法. 激光与光电子学进展, 2019, 56(1): 11006--1

【14】章盛,李培华,张骏,钱名思,鲁兴平,叶程广. 基于压缩感知的图像配准算法研究. 光电子技术, 2018, 38(2): 111-116

【15】汪权,朋汉林,汪平河,樊金宇,刘敬璇,史国华. 光学相干层析成像眼底视网膜三维图像去抖动方法. 光学学报, 2019, 39(3): 317001--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF