首页 > 论文 > Photonics Research > 2卷 > 5期(pp:111-120)

Perovskite-based low-cost and high-efficiency hybrid halide solar cells

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

A cost-effective and high-throughput material named perovskite has proven to be capable of converting 15.9% of the solar energy to electricity, compared to an efficiency of 3.8% that was obtained only four years ago. It has already outperformed most of the thin-film solar cell technologies that researchers have been studying for decades. Currently, the architecture of perovskite solar cells has been simplified from the traditional dye-sensitized solar cells to planar-heterojunction solar cells. Recently, the performance of perovskite in solar cells has attracted intensive attention and studies. Foreseeably, many transformative steps will be put forward over the coming few years. In this review, we summarize the recent exciting development in perovskite solar cells, and discuss the fundamental mechanisms of perovskite materials in solar cells and their structural evolution. In addition, future directions and prospects are proposed toward high-efficiency perovskite solar cells for practical applications.

Newport宣传-MKS新实验室计划
补充资料

基金项目:support from the Victorian Government under the Victoria Science Agenda (VSA) scheme. Min Gu and Baohua Jia thank the Australian Research Council for its support (DP140100849). Min Gu also acknowledges support from the Science and Industry Endowment Fund.

收稿日期:2014-05-12

录用日期:2014-07-09

网络出版日期:--

作者单位    点击查看

Jiandong Fan:Centre for Micro-Photonics, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
Baohua Jia:Centre for Micro-Photonics, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
Min Gu:Centre for Micro-Photonics, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia

联系人作者:Min Gu(mgu@swin.edu.au)

【1】S. B. Darling, F. Q. You, T. Veselka, and A. Velosa, “Assumptions and the levelized cost of energy for photovoltaics,” Energy Environ. Sci. 4, 3133–3139 (2011).

【2】D. J. Yue, P. Khatav, F. Q. You, and S. B. Darling, “Deciphering the uncertainties in life cycle energy and environmental analysis of organic photovoltaics,” Energy Environ. Sci. 5, 9163–9172 (2012).

【3】IEA-ETSAP and IRENA Technology Brief E11 (2013).

【4】K. Efthymios and R. Bryce, “Improvement in multi-crystalline silicon solar cell efficiency via addition of luminescent material to EVA encapsulation layer,” Prog. Photovoltaics Res. Appl. 19, 345–351 (2011).

【5】D. Ginley, M. A. Green, and R. Collins, “Solar energy conversion toward 1 terawatt,” MRS Bull. 33, 355–364 (2008).

【6】P. Jackson, D. Hariskos, E. Lotter, S. Paetel, and R. Wuerz, “New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%,” Prog. Photovoltaics Res. Appl. 19, 894–897 (2011).

【7】X. Chen, B. H. Jia, Y. N. Zhang, and M. Gu, “Exceeding the limit of plasmonic light trapping in textured screen-printed solar cells using Al nanoparticles and wrinkle-like graphene sheets,” Light Sci. Appl. 2, e92 (2013).

【8】C. J. Hibberd, E. Chassaing, W. Liu, D. B. Mitzi, and D. Lincot, “Non-vacuum methods for formation of Cu(In,Ga)(Se,S)2 thin film photovoltaic absorbers,” Prog. Photovoltaics Res. Appl. 18, 434–452 (2010).

【9】W. M. Robert, Z. Guillaume, and F. Ian, “Inorganic photovoltaic cells,” Mater. Today 10(11), 20–27 (2007).

【10】B. O’Regan and M. Gratzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature 353, 737–740 (1991).

【11】A. Hagfeldt, G. Boschloo, L. C. Sun, L. Kloo, and H. Pettersson, “Dye-sensitized solar cells,” Chem. Rev. 110, 6595–6663 (2010).

【12】J. Y. Cong, X. C. Yang, L. Kloo, and L. C. Sun, “Iodine/iodide-free redox shuttles for liquid electrolyte-based dye-sensitized solar cells,” Energy Environ. Sci. 5, 9180–9194 (2012).

【13】N. Tetreault and M. Gratzel, “Novel nanostructures for next generation dye-sensitized solar cells,” Energy Environ. Sci. 5, 8506–8516 (2012).

【14】G. Boschloo and A. Hagfeldt, “Characteristics of the iodide/triiodideredox mediator in dye-sensitized solar cells,” Acc. Chem. Res. 42, 1819–1826 (2009).

【15】J. H. Yum, E. Baranoff, F. Kessler, T. Moehl, and S. Ahmad, “A cobalt complex redox shuttle for dye-sensitized solar cells with high open-circuit potentials,” Nat. Commun. 3, 631 (2012).

【16】E. Mosconi, J. H. Yum, F. Kessler, C. J. Gomez-Garcia, and C. Zuccaccia, “Cobalt electrolyte/dye interactions in dye-sensitized solar cells: a combined computational and experimental study,” J. Am. Chem. Soc. 134, 19438–19453 (2012).

【17】S. M. Feldt, E. A. Gibson, E. Gabrielsson, L. C. Sun, and G. Boschloo, “Design of organic dyes and cobalt polypyridineredox mediators for high-efficiency dye-sensitized solar cells,” J. Am. Chem. Soc. 132, 16714–16724 (2010).

【18】C. K. Xu, J. M. Wu, U. V. Desai, and D. Gao, “Multilayer assembly of nanowire arrays for dye-sensitized solar cells,” J. Am. Chem. Soc. 133, 8122–8125 (2011).

【19】M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater. 4, 455–459 (2005).

【20】B. Liu and E. S. Aydil, “Growth of oriented single-crystalline rutile TiO2nanorods on transparent conducting substrates for dye-sensitized solar cells,” J. Am. Chem. Soc. 131, 3985–3990 (2009).

【21】D. B. Kuang, J. Brillet, P. Chen, M. Takata, and S. Uchida, “Application of highly ordered TiO2 nanotube arrays in flexible dye-sensitized solar cells,” ACS Nano 2, 1113–1116 (2008).

【22】Q. L. Huang, G. Zhou, L. Fang, L. P. Hua, and Z. S. Wang, “TiO2 nanorod arrays grown from a mixed acid medium for efficient dye-sensitized solar cells,” Energy Environ. Sci. 4, 2145–2151 (2011).

【23】A. Yella, H. W. Lee, H. N. Tsao, C. Y. Yi, and A. K. Chandiran, “Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency,” Science 334, 629–634 (2011).

【24】U. Bach, D. Lupo, P. Comte, J. E. Moser, and F. Weissortel, “Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies,” Nature 395, 583–585 (1998).

【25】L. Yang, U. B. Cappel, E. L. Unger, M. Karlsson, and K. M. Karlsson, “Comparing spiro-OMeTAD and P3HT hole conductors in efficient solid state dye-sensitized solar cells,” Phys. Chem. Chem. Phys. 14, 779–789 (2012).

【26】W. Zhang, R. Zhu, F. Li, Q. Wang, and B. Liu, “High-performance solid-state organic dye sensitized solar cells with P3HT as hole transporter,” J. Phys. Chem. C 115, 7038–7043 (2011).

【27】S. X. Tan, J. Zhai, M. X. Wan, Q. B. Meng, and Y. L. Li, “Influence of small molecules in conducting polyaniline on the photovoltaic properties of solid-state dye-sensitized solar cells,” J. Phys. Chem. B 108, 18693–18697 (2004).

【28】K. Murakoshi, R. Kogure, Y. Wada, and S. Yanagida, “Fabrication of solid-state dye-sensitized TiO2solar cells combined with polypyrrole,” Sol. Energy Mater. Sol. Cells 55, 113–125 (1998).

【29】J. Krüger, R. Plass, L. Cevey, M. Piccirelli, and M. Graatzel, “High efficiency solid-state photovoltaic device due to inhibition of interface charge recombination,” Appl. Phys. Lett. 79, 2085–2087 (2001).

【30】A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” J. Am. Chem. Soc. 131, 6050–6051 (2009).

【31】H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, and T. Moehl, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Sci. Rep. 2, 591 (2012).

【32】M. Liu, M. B. Johnston, and H. J. Snaith, “Efficient planar heterojunction perovskite solar cells by vapour deposition,” Nature 501, 395–398 (2013).

【33】K. Wojciechowski, M. Saliba, T. Leijtens, A. Abate, and H. J. Snaith, “Sub-150°C processed meso-superstructured perovskite solar cells with enhanced efficiency,” Energy Environ. Sci. 7, 1142–1147 (2014).

【34】J. H. Im, C. R. Lee, J. W. Lee, S. W. Park, and N. G. Park, “6.5% efficient perovskite quantum-dot-sensitized solar cell,” Nanoscale 3, 4088–4093 (2011).

【35】M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, “Efficient hybrid solar cells based on mesosuperstructured organometal halide perovskites,” Science 338, 643–647 (2012).

【36】L. Etgar, P. Gao, Z. S. Xue, Q. Peng, and A. K. Chandiran, “Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells,” J. Am. Chem. Soc. 134, 17396–17399 (2012).

【37】S. S. Shin, J. S. Kim, J. H. Suk, K. D. Lee, and D. W. Kim, “Improved quantum efficiency of highly efficient perovskite BaSnO3-based dye-sensitized solar cells,” ACS Nano 7, 1027–1035 (2013).

【38】E. Edri, S. Kirmayer, D. Cahen, and G. Hodes, “High open-circuit voltage solar cells based on organic–inorganic lead bromide perovskite,” J. Phys. Chem. Lett. 4, 897–902 (2013).

【39】J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, “Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells,” Nano Lett. 13, 1764–1769 (2013).

【40】D. Q. Bi, L. Yang, G. Boschloo, A. Hagfeldt, and E. M. J. Johansson, “Effect of different hole transport materials on recombination in CH3NH3PbI3 perovskite-sensitized mesoscopic solar cells,” J. Phys. Chem. Lett. 4, 1532–1536 (2013).

【41】I. Chung, B. H. Lee, J. Q. He, R. P. H. Chang, and M. G. Kanatzidis, “All-solid-state dye-sensitized solar cells with high efficiency,” Nature 485, 486–489 (2012).

【42】H. S. Kim, J. W. Lee, N. Yantara, P. P. Boix, and S. A. Kulkarni, “High efficiency solid-state sensitized solar cell-based on submicrometer rutile TiO2 nanorod and CH3NH3PbI3 perovskite sensitizer,” Nano Lett. 13, 2412–2417 (2013).

【43】A. Abrusci, S. D. Stranks, P. Docampo, H. L. Yip, and A. K. Y. Jen, “High performance perovskite-polymer hybrid solar cells via electronic coupling with fullerene monolayers,” Nano Lett. 13, 3124–3128 (2013).

【44】J. M. Ball, M. M. Lee, A. Hey, and H. J. Snaith, “Low-temperature processed meso-superstructured to thin-film perovskite solar cells,” Energy Environ. Sci. 6, 1739–1743 (2013).

【45】J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, and P. Gao, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499, 316–319 (2013).

【46】W. Zhang, M. Saliba, S. D. Stranks, Y. Sun, and X. Shi, “Enhancement of perovskite-based solar cells employing core–shell metal nanoparticles,” Nano Lett. 13, 4505–4510 (2013).

【47】A. Abate, D. J. Hollman, J. Teuscher, S. Pathak, and R. Avolio, “Protic ionic liquids as p-dopant for organic hole transporting materials and their application in high efficiency hybrid solar cells,” J. Am. Chem. Soc. 135, 13538–13548 (2013).

【48】G. E. Eperon, V. M. Burlakov, P. Docampo, A. Goriely, and H. J. Snaith, “Morphological control for high performance, solutionprocessed planar heterojunction perovskite solar cells,” Adv. Funct. Mater. 24, 151–157 (2014).

【49】D. Q. Bi, S. J. Moon, L. Hoggman, G. Boschloo, and L. Yang, “Using a two-step deposition technique to prepare perovskite (CH3NH3PbI3) for thin film solar cells based on ZrO2 and TiO2mesostructures,” RSC Adv. 3, 18762–18766 (2013).

【50】J. H. Qiu, Y. C. Qiu, K. Y. Yan, M. Zhong, and C. Mu, “All-solidstate hybrid solar cells based on a new organometal halide perovskite sensitizer and one-dimensional TiO2 nanowire arrays,” Nanoscale 5, 3245–3248 (2013).

【51】D. Q. Bi, G. Boschloo, S. Schwarzmüller, L. Yang, and E. M. J. Johansson, “Efficient and stable CH3NH3PbI3-sensitized ZnO nanorod array solid-state solar cells,” Nanoscale 5, 11686–11691 (2013).

【52】J. A. Christians, R. C. M. Fung, and P. V. Kamat, “An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide,” J. Am. Chem. Soc. 136, 758–764 (2014).

【53】N. JoongJeon, J. Lee, J. H. Noh, M. K. Nazeeruddin, and M. Gratzel, “Efficient inorganic–organic hybrid perovskite solar cells based on pyrenearylamine derivatives as hole-transporting materials,” J. Am. Chem. Soc. 135, 19087–19090 (2013).

【54】T. M. Koh, K. W. Fu, Y. N. Fang, S. Chen, and T. C. Sum, “Formamidinium-containing metal-halide: an alternative material for near-IR absorption perovskite solar cells,” J. Phys. Chem. C 118, 16458–16462 (2014).

【55】B. Conings, L. Baeten, C. D. Dobbelaere, J. D’Haen, and J. Manca, “Perovskite-based hybrid solar cells exceeding 10% efficiency with high reproducibility using a thin film sandwich approach,” Adv. Mater. 26, 2041–2046 (2014).

【56】J. T. W. Wang, J. M. Ball, E. M. Barea, A. Abate, and J. A. Alexander-Webber, “Low-temperature processed electron collection layers of Graphene/TiO2 nanocomposites in thin film perovskite solar cells,” Nano Lett. 14, 724–730 (2014).

【57】Q. Chen, H. P. Zhou, Z. R. Hong, S. Luo, and H. S. Duan, “Planar heterojunction perovskite solar cells via vapor-assisted solution process,” J. Am. Chem. Soc. 136, 622–625 (2014).

【58】D. Y. Liu and L. Kelly, “Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques,” Nat. Photonics 8, 133–138 (2014).

【59】G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, and L. M. Herz, “Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells,” Energy Environ. Sci. 7, 982–988 (2014).

【60】J. B. You, Z. R. Hong, Y. Yang, Q. Chen, and M. Cai, “Lowtemperature solution-processed perovskite solar cells with high efficiency and flexibility,” ACS Nano 8, 1674–1680 (2014).

【61】G. H. Xing, N. Mathews, S. Y. Sun, S. S. Lim, and Y. M. Lam, “Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3,” Science 342, 344–347 (2013).

【62】S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, and M. J. P. Alcocer, “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,” Science 342, 341–344 (2013).

【63】C. Wehrenfennig, G. E. Eperon, M. B. Johnston, H. J. Snaith, and L. M. Herz, “High charge carrier mobilities and lifetimes in organolead trihalide perovskites,” Adv. Mater. 26, 1584–1589 (2014).

【64】G. Hodes, “Perovskite-based solar cells,” Science 342, 317–318 (2013).

【65】R. F. Service, “Turning up the light,” Science 342, 794–797 (2013).

【66】M. He, D. G. Zheng, M. Y. Wang, C. J. Lin, and Z. Q. Lin, “High efficiency perovskite solar cells: from complex nanostructure to planar heterojunction,” J. Mater. Chem. 2, 5994–6003 (2014).

【67】H. J. Snaith, “Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells,” J. Phys. Chem. Lett. 4, 3623–3630 (2013).

【68】J. H. Rhee, C. C. Chung, and E. W. G. Diau, “A perspective of mesoscopic solar cells based on metal chalcogenide quantum dots and organometal-halide perovskites,” NPG Asia Mater. 5, e68 (2013).

【69】N. G. Park, “Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell,” J. Phys. Chem. Lett. 4, 2423–2429 (2013).

【70】I. Borriello, G. Cantele, and D. Ninno, “Ab initio investigation of hybrid organic-inorganic perovskites based on tin halides,” Phys. Rev. B 77, 235214 (2008).

【71】G. Shirane, H. Danner, and R. Pepinshi, “Neutron diffraction study of orthorhombic BaTiO3,” Phys. Rev. 105, 856–860 (1957).

【72】E. P. Giannelis, “Polymer layered silicate nanocomposites,” Adv. Mater. 8, 29–35 (1996).

【73】S. S. Ray and M. Okamoto, “Polymer/layered silicate nanocomposites: a review from preparation to processing,” Prog. Polym. Sci. 28, 1539–1641 (2003).

【74】S. S. Ray and M. Bousmina, “Biodegradable polymers and their layered silicate nanocomposites: in greening the 21st century materials world,” Prog. Mater. Sci. 50, 962–1079 (2005).

【75】D. B. Mitzi, “Synthesis and crystal structure of the alkylbismuth diiodides: a family of extended one-dimensional organometallic compounds,” Inorg. Chem. 35, 7614–7619 (1996).

【76】D. B. Mitzi, C. A. Field, Z. Schlesinger, and R. B. Laibowitz, “Transport, optical, and magnetic properties of the conducting halide perovskite CH3NH3SnI3,” J. Solid State Chem. 114, 159–163 (1995).

【77】O. Knop, R. E. Wasylishen, M. A. White, T. S. Cameron, and M. J. M. V. Oort, “Alkylammonium lead halides. Part 2. CH3NH3PbX3 (X = Cl, Br, I) perovskites: cuboctahedral halide cages with isotropic cation reorientation,” Can. J. Chem. 68, 412–422 (1990).

【78】C. C. Stoumpos, C. D. Malliakas, and M. G. Kanatzidis, “Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties,” Inorg. Chem. 52, 9019–9038 (2013).

【79】A. Poglitsch and D. Weber, “Dynamic disorder in methyl ammonium trihalogenoplumbates (II) observed by millimeter-wave spectroscopy,” J. Chem. Phys. 87, 6373–6378 (1987).

【80】K. Shum, Z. Chen, J. Qureshi, C. L. Yu, and J. J. Wang, “Synthesis and characterization of CsSnI3 thin films,” Appl. Phys. Lett. 96, 221903 (2010).

【81】K. Yamada, Y. Kuranaga, K. Ueda, S. Goto, and T. Okuda, “Phase transition and electric conductivity of ASnCl3 (A = Cs and CH3NH3),” Bull. Chem. Soc. Jpn. 71, 127–134 (1998).

【82】Q. Xu, T. Educhi, H. Nakayama, N. Nakamura, and M. Kishita, “Molecular motions and phase transitions in solid CH3NH3PbX3 (X = Cl, Br, I) as studied by NMR and NQR,” Z. Naturforsch. 46, 240–246 (1991).

【83】D. B. Mitzi, S. Wang, C. A. Feild, C. A. Chess, and A. M. Guloy, “Conducting layered organic-inorganic halides containing <110>-oriented perovskite sheets,” Science 267, 1473–1476 (1995).

【84】D. B. Mitzi, C. A. Feild, W. T. A. Harrison, and A. M. Guloy, “Conducting tin halides with a layered organic-based perovskite structure,” Nature 369, 467–469 (1994).

【85】F. Chiarella, A. Zappettini, P. Ferro, T. Besagni, and F. Licci, “Growth and characterization of hybrid (CnH2n+1NH3)2CuCl4 self-assembled films,” Cryst. Res. Technol. 40, 1028–1032 (2005).

【86】D. B. Mitzi, “Thin-film deposition of organic–inorganic hybrid materials,” Chem. Mater. 13, 3283–3298 (2001).

【87】R. Valiente and F. Rodriguez, “Electron-phonon coupling in charge-transfer and crystal-field states of Jahn–Teller CuCl6 4-systems,” Phys. Rev. B 60, 9423–9429 (1999).

【88】C. R. Kagan, D. B. Mitzi, and C. D. Dimitrakopoulos, “Organicinorganic hybrid materials as semiconducting channels in thinfilm field-effect transistors,” Science 286, 945–947 (1999).

【89】P. Zhou, J. E. Drumheller, B. Patyal, and R. D. Willet, “Magnetic properties and critical behavior of quasi-two-dimensional systems [C6H5(CH2)nNH3]2CuBr4 with n = 1, 2, and 3,” Phys. Rev. B 45, 12365–12376 (1992).

【90】M. Era, S. Morimoto, T. Tsutsui, and S. Saito, “Organic-inorganic heterostructure electroluminescent device using a layered perovskite semiconductor (C6H5C2H4NH3)2PbI4,” Appl. Phys. Lett. 65, 676–678 (1994).

【91】X. Hong, T. Ishihara, and A. V. Nurmikko, “Dielectric confinement effect on excitons in PbI4-based layered semiconductors,” Phys. Rev. B 45, 6961–6964 (1992).

【92】H. J. Snaith, R. Humphry-Baker, P. Chen, I. Cesar, and S. M. Zakeeruddin, “Charge collection and pore filling in solid-state dye-sensitized solar cells,” Nanotechnology 19, 424003 (2008).

【93】J. D. Fan, A. Shavel, R. Zamani, C. Fabrega, and J. Rousset, “Control of the doping concentration, morphology and optoelectronic properties of vertically aligned chlorine-doped ZnO nanowires,” Acta Mater. 59, 6790–6800 (2011).

【94】J. D. Fan, Y. Hao, M. G. Hernandez, C. Munuera, and F. Güell, “Influence of the annealing atmosphere on the performance of ZnO nanowires-based dye-sensitized solar cells,” J. Phys. Chem. C 117, 16349–16356 (2013).

【95】J. D. Fan, Y. Hao, A. Cabot, E. M. J. Johansson, and G. Boschlo, “Cobalt (II/III) redox electrolyte in ZnO nanowire-based dyesensitized solar cells,” ACS Appl. Mater. Interfaces 5, 1902–1906 (2013).

【96】J. D. Fan, C. Fabrega, R. R. Zamani, Y. Hao, and A. Parra, “Enhanced photovoltaic performance of nanowire dye-sensitized solar cells based on coaxial TiO2@TiO heterostructures with a cobalt (II/III) redox electrolyte,” ACS Appl. Mater. Interfaces 5, 9872–9877 (2013).

【97】J. D. Fan, F. Guell, C. Fabrega, A. Shavel, and A. Carrete, “Enhancement of the photoelectrochemical properties of Cl-doped ZnO nanowires by tuning their coaxial doping profile,” Appl. Phys. Lett. 99, 262102 (2011).

【98】J. D. Fan, C. Fabrega, R. Zamani, A. Shavel, and F. Güell, “Solution-growth and optoelectronic properties of ZnO: Cl@ZnS core-shell nanowires with tunable shell thickness,” J. Alloys Compd. 555, 213–218 (2013).

【99】J. D. Fan, R. Zamani, C. Fabrega, A. Shavel, and C. Flox, “Solution- growth and optoelectronic performance of ZnO:Cl/TiO2 and ZnO:Cl/ZnxTiOy/TiO2 core–shell nanowires with tunable shell thickness,” J. Phys. D 45, 415301 (2012).

【100】K. Zhu, N. R. Neale, A. Miedaner, and A. J. Frank, “Enhanced charge-collection efficiencies and light scattering in dyesensitized solar cells using oriented TiO2 nanotubes arrays,” Nano Lett. 7, 69–74 (2007).

【101】J. P. Gonzalez-Vazquez, V. Morales-Florez, and J. A. Anta, “How important is working with an ordered electrode to improve the charge collection efficiency in nanostructured solar cells?” J. Phys. Chem. Lett. 3, 386–393 (2012).

【102】K. Tanaka, T. Takahashi, T. Ban, T. Kondo, and K. Uchida, “Extremely large binding energy of biexcitons in an organic–inorganic quantum-well material (C4H9NH3)2PbBr4,” Solid State Commun. 127, 619–623 (2003).

【103】C. Silvia, M. Edoardo, F. Paolo, L. Andrea, and G. Francesco, “MAPbI3-xClx mixed halide perovskite for hybrid solar cells: the role of chloride as dopant on the transport and structural properties,” Chem. Mater. 25, 4613–4618 (2013).

【104】K. N. Liang, D. B. Mitzi, and M. T. Prikas, “Synthesis and characterization of organic-inorganic perovskite thin films prepared using a versatile two-step dipping technique,” Chem. Mater. 10, 403–411 (1998).

【105】P. Langevin, “Recombinaison et mobilites des ions dans les gaz,” Ann. Chim. Phys. 28, 433–530 (1903).

【106】H. J. Snaith, “Estimating the maximum attainable efficiency in dye-sensitized solar cells,” Adv. Funct. Mater. 20, 13–19 (2010).

引用该论文

Jiandong Fan, Baohua Jia, and and Min Gu, "Perovskite-based low-cost and high-efficiency hybrid halide solar cells," Photonics Research 2(5), 111-120 (2014)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF