首页 > 论文 > 红外 > 35卷 > 10期(pp:7-13)

论高工作温度碲镉汞红外探测器(下)

On the High Operating Temperature Mercury Cadmium Telluride Infrared Detector (II)

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

与用其他材料制备的红外光子探测器相比,碲镉汞红外探测器具有 带隙灵活可调、量子效率较高以及接近理论值等优点。碲镉汞探测器的主要缺点是需要低温制冷, 以抑制引起噪声的热生自由载流子。期望碲镉汞探测器在具有高工作温度(High Operating Temperature, HOT)的同时而又无需牺牲 性能。HOT碲镉汞探测器的设计目标主要是抑制俄歇过程,从而降低探测器噪声和低温制冷 需求。从相关基本概念出发,讨论了对HOT碲镉汞物理机制的理解以及近年来HOT碲镉汞技术的发 展状况。

Abstract

Compared with the infrared photon detectors fabricated from other materials, the infrared detectors fabricated from mercury cadmium telluride (MCT) have several advantages of highly tunable bandgap, high quantum efficiency and approaching the theoretical limit. The main drawback of the MCT detectors is that they have need to use cryogenic cooling to suppress the thermal-induced free carriers resulting in noise. It is desirable that the MCT detectors can operate at high operating temperatures (HOT) without sacrificing their performance. The HOT/MCT detectors are designed mainly to suppress Auger processes so as to reduce noise and degrade cryogenic cooling requirement. Starting from related basic concepts, the understanding of the physical mechanism of HOT/MCT is discussed and the development of HOT/MCT detection technology in recent years is presented.

广告组6 - 调制器
补充资料

中图分类号:TN305

DOI:10.3969/j.issn.1672-8785.2014.10.002

所属栏目:研究论文

收稿日期:2014-05-08

修改稿日期:--

网络出版日期:--

作者单位    点击查看

王忆锋:昆明物理研究所,云南 昆明 650223
刘萍:昆明物理研究所,云南 昆明 650223

联系人作者:王忆锋(wangyifeng63@sina.com)

备注:王忆锋(1963-),男,湖南零陵人,工学士,高级工程师,主要从事器件仿真研究。

【1】Singh A, Srivastav V, Pal R. HgCdTe Avalanche Photodiodes: A Review [J]. Optics & Laser Technology, 2011, 43: 1358-1370.

【2】Velicu S, Grein C H, Emelie P Y, et al. Non-cryogenic Operation of HgCdTe Infrared Detectors [C]. SPIE, 2010, 7608: 760820.

【3】Gordon N T, Jones C L, Lees D J, et al. High Performance, 2D MWIR HgCdTe Array Operating at 220 K [C]. SPIE, 2004, 5406: 145-151.

【4】Piotrowski J, Gawron W, Orman Z, et al. Dark Currents, Responsivity, and Response Time in Graded Gap HgCdTe Structures [C]. SPIE, 2010, 7660: 766031.

【5】Kinch M A. High Operating Temperature (HOT) Detector Requirements [C]. SPIE, 2001, 4454: 168-179.

【6】Breiter R, Wendler J, Lutz H, et al. High Operating Temperature IR-modules with Reduced Pitch for SWaP Sensitive Applications [C]. SPIE, 2011, 8012: 80122V.

【7】Madejczyk P, Gawron W, Piotrowski A, et al. Improvement in Performance of High-operating Temperature HgCdTe Photodiodes [J]. Infrared Physics & Technology, 2011, 54(3): 310-315.

【8】Capper P, Garland J. Mercury Cadmium Telluride: Growth, Properties and Applications [M]. London: John Wiley & Sons, Ltd, 2011.

【9】Wijewarnasuriya P S. Nonequilibrium Operation of Long Wavelength HgCdTe Photo Detectors for Higher Operating Temperatures [C]. SPIE, 2010, 7780: 77800A.

【10】Hansen G L, Schmit J L, Casselman T N. Energy Gap Versus Alloy Composition and Temperature in HgCdTe [J]. Journal of Applied Physics, 1982, 53(10): 7099-7101.

【11】Miller J L. Principles of Infrared Technology: A Practical Guide to the State of the Art [M]. New York: Chapman and Hall, 1994.

【12】虞丽生. 半导体异质结物理(第二版) [M]. 北京: 科学出版社, 2006.

【13】Piotrowski J, Gawron W, Djuric Z. New Generation of Near-room-temperature Photodetectors [J]. Optical Engineering, 1994, 33(5): 1413-1421.

【14】褚君浩. 窄禁带半导体物理学 [M]. 北京: 科学出版社, 2005.

【15】汪志诚. 热力学统计物理(第三版) [M]. 北京: 高等教育出版社, 2005.

【16】Donald A N著. 赵毅强, 姚素英, 解晓东, 等译. 半导体物理与器件(第三版) [M]. 北京: 电子工业出版社, 2005.

【17】马声全, 陈贻汉. 光电子理论与技术 [M]. 北京: 科学出版社, 2005.

【18】犬石嘉雄, 滨川圭弘, 白藤纯嗣著. 周绍康, 郗小林, 雷京贵, 等译. 半导体物理 [M]. 北京: 科学出版社, 1986.

【19】刘树林, 张华曹, 柴常春. 半导体器件物理 [M]. 北京: 电子工业出版社, 2005.

【20】Pierret R F著. 黄如, 王漪, 王金延, 等译. 韩汝琦校. 半导体器件基础 [M]. 北京: 电子工业出版社, 2004.

【21】陈治明, 王建农. 半导体器件的材料物理学基础 [M]. 北京: 科学出版社, 2003.

【22】王忆锋. 用MATLAB求解一般形式的电中性方程 [J]. 红外, 2009, 30(9): 46-48.

【23】Rogalski A. Infrared Photon Detectors [M]. Bellingham: SPIE Optical Engineering Press, 1995.

【24】Capper P. Narrow-gap II-VI Compounds for Optoelectronic and Electromagnetic Applications [M]. London: Chapman & Hall, 1997.

【25】Srivastav V, Pal R, Venkataraman V. Modeling of Room Temperature Current-voltage Measurements on Homo-junction HgCdTe Diodes Exhibiting . Nonequilibrium Effects [J]. Journal of Applied Physics, 2012, 111(3): 033112.

【26】White A M. Auger Suppression and Negative Resistance in Low Gap Diode Structures [J]. Infrared Physics, 1986, 26(5): 317-324.

【27】White A M. Generation-recombination Process and Auger Suppression in Small-bandgap Detectors [J]. Journal of Crystal Growth, 1988, 86(1/4): 840-848.

【28】孟庆巨, 刘海波, 孟庆辉. 半导体器件物理 [M]. 北京: 科学出版社, 2005.

【29】Velicu S, Grein C H, Emelie P Y, et al. MWIR and LWIR HgCdTe Infrared Detectors Operated with Reduced Cooling Requirements [J]. Journal of Electronic Materials, 2010, 39(7): 873-881.

【30】Boieriu P, Velicu S, Bommena R, et al. High Operation Temperature of HgCdTe Photodiodes by Bulk Defect Passivation [C]. SPIE, 2013, 8631: 86311J.

【31】Henini M, Razeghi M. Handbook of Infrared Detection Technologies [M]. London: Elsevier Science, Ltd, 2002.

【32】傅英, 陆卫. 半导体量子器件物理 [M]. 北京: 科学出版社, 2005.

【33】Nitz H M, Ganschow O, Kaiser U, et al. Quasi-simultaneous SIMS, AES, XPS, and TDMS Study of Preferential Sputtering, Diffusion, and Mercury Evaporation in CdHgTe [J]. Surface Science, 1981, 104(2/3): 365-383.

【34】王忆锋, 刘黎明, 余连杰, 等. 碲镉汞材料非本征掺杂研究的发展 [J]. 红外, 2012, 33(1): 1-16.

【35】Rutkowski J. Planar Junction Formation in HgCdTe Infrared Detectors [J]. Opto-Electronics Review, 2004, 12(1): 123-128.

【36】王忆锋, 余连杰, 胡为民. 碲镉汞材料导电类型转换研究的发展 [J]. 红外, 2011, 32(12): 1-9.

【37】Ashley T, Gordon N T. Higher-operating-temper-ature High-performance Infrared Focal Plane Arrays [C]. SPIE, 2004, 5359: 89-100.

【38】Roush F M, Shih H, Orent T W, et al. High-ope-rating-temperature Infrared Detectors Based on HDVIP [C]. SPIE, 2004, 5563: 7-12.

【39】Smith K D, Wehner J G A, Graham R W, et al. High Operating Temperature Mid-wavelength Infrared HgCdTe Photon Trapping Focal Plane Arrays [C]. SPIE, 2012, 8353: 83532R.

【40】Karimi M, Kalafi M, Asgari A. Numerical Optimization of an Extracted HgCdTe IR-photodiodes for 10.6 m Spectral Region Operating at Room Temperature [J]. Microelectronics Journal, 2007, 38(2): 216-221.

【41】Baier N, Mollard L, Rothman J, et al. Status of p-on-n HgCdTe Technologies at DEFIR [C]. SPIE, 2009, 7298: 729823.

【42】Tidrow M Z, Beck W A, Clark W W, et al. Device Physics and Focal Plane Applications of QWIP and MCT [J]. Opto-Electronic Review, 1999, 7(1): 283-296.

【43】Gravrand O, Chorier P. Status of Very Long Infrared-wave Focal Plane Array Development at DEFIR [C]. SPIE, 2009, 7298: 729821.

【44】Terrier B, Delannoy A, Chorier P, et al. LWIR and VLWIR Detectors Development at SOFRADIR for Space Applications [C]. SPIE, 2010, 7826: 78261J.

【45】Vuillermet M, Tribolet P. Operating Temperature: A Challenge for Cooled IR Technologies [C]. SPIE, 2010, 7660: 76602U.

【46】Vuillermet M, Rubaldo L, Chabuel F, et al. HOT Infrared Detectors Using MCT Technology [C]. SPIE, 2011, 8012: 80122W.

【47】王忆锋, 刘黎明, 余连杰, 等. 碲镉汞材料非本征掺杂研究的发展 [J]. 红外, 2012, 33(1): 1-16.

【48】Wollrab R, Bauer A, Bitterlich H, et al. Planar n-on-p HgCdTe FPAs for LWIR and VLWIR Applications [J]. Journal of Electronic Materials, 2011, 40(8): 1618-1623.

【49】Kinch M A, Aqariden F, Chandra D, et al. Minority Carrier Lifetime in p-HgCdTe [J]. Journal of Electronic Materials, 2005, 34(6): 880-884.

【50】Shih H D, Kinch M A, Aqariden F. Development of High-operating-temperature Infrared Detectors with Gold-doped HgCdTe [J]. Applied Physics Letters, 2004, 84(8): 1263-1265.

【51】Aqariden F, Shih H D, Kinch M A, et al. Electrical Properties of Low-arsenic-doped HgCdTe Grown by Molecular Beam Epitaxy [J]. Applied Physics Letters, 2001, 78(22): 3481-3483.

【52】Ziegler J, Eich D, Hanna S, et al. Recent Results of 2-dimensional LW- and VLW- HgCdTe IR FPAs at AIM [C]. SPIE, 2010, 7660: 766038.

【53】Jozwikowski K, Kopytko M, Rogalski A, et al. Enhanced Numerical Analysis of Current-voltage Characteristics of Long Wavelength Infrared n-on-p HgCdTe Photodiodes [J]. Journal of Applied Physics, 2010, 108(7): 074519.

【54】Breiter R, Ihle T, Wendler J, et al. MCT IR Detection Modules with 15 m Pitch for High Reliability Applications [C]. SPIE, 2010, 7660: 766039.

【55】Vuillermet M, Lanfrey D B, Reibel Y, et al. Status of MCT Focal Plane Arrays in France [C]. SPIE, 2012, 8353: 83531K.

【56】Warner R M, Grung B L. Semiconductor-device Electronics [M]. 北京: 电子工业出版社, 2002.

【57】Willardson R K, Beer A C. Semiconductors and Semimetals (Vol.18): Mercury Cadmium Telluride [M]. New York: Academic Press, 1981.

【58】Vasiliev V V, Remesnik V G, Dvoretsky S A, et al. MCT Infrared Photodiodes on the Basis of Graded Gap P-p Heterojunction Grown by MBE HgCdTe Epilayers on GaAs [C]. SPIE, 2006, 6189: 61892A.

【59】Wijewarnasuriya P S, Brill G, Chen Y, et al. Pronounced Auger Suppression in Long Wavelength HgCdTe Devices Grown by Molecular Beam Epitaxy [C]. SPIE, 2007, 6542: 65420G.

【60】Kinch M A, Schaake H F, Strong R L, et al. High Operating Temperature MWIR Detectors [C]. SPIE, 2010, 7660: 76602V.

【61】Piotrowski J, Gawron W, Orman Z, et al. Dark Currents, Responsivity, and Response Time in Graded Gap HgCdTe Structures [C]. SPIE, 2010, 7660: 766031.

【62】Mitra P, Case F C, Reine M B, et al. MOVPE Growth of HgCdTe for High Performance 3-5 m Photodiodes Operating at 100-180 K [J]. Journal of Electronic Materials, 1999, 28(6): 589-595.

【63】Karimi M, Kalafi M, Asgari A. Numerical Optimization of an Extracted HgCdTe IR-photodiodes for 10.6 m Spectral Region Operating at Room Temperature [J]. Microelectronics Journal, 2007, 38(2): 216-221.

【64】Gordon N T, Lees D J, Bowen G, et al. HgCdTe Detectors Operating above 200 K [J]. Journal of Electronic Materials, 2006, 35(6): 1140-1144.

【65】Piotrowski A, Madejczyk P, Gawron W, et al. Growth of MOCVD HgCdTe Heterostructures for Uncooled Infrared Photodetectors [J]. Bulletin of the Polish Academy of Sciences: Technical Sciences, 2005, 53(2): 140-149.

【66】Manissadjian A, Costa P, Tribolet P M, et al. HgCdTe Performance for High Operating Temperatures [C]. SPIE, 1998, 3436: 150-161.

【67】Gordon N T, Rees D J, Bowen G, et al. HgCdTe Detectors Operating above 200 K [J]. Journal of Electronic Materials, 2006, 35(6): 1140-1144.

【68】Pillans L, Ash R M, Hipwood L, et al. MWIR Mercury Cadmium Telluride Detectors for High Operating Temperatures [C]. SPIE, 2012, 8353: 83532W.

【69】Tennant W E, Cabelli S, Spariosu K. Prospects of Uncooled HgCdTe Detector Technology [J]. Journal of Electronic Materials, 1999, 28(6): 582-588.

【70】Ruhlich I, Mai M, Rosenhagen C, et al. Compact High-efficiency Linear Cryocooler in Single-piston Moving Magnet Design for HOT Detectors [C]. SPIE, 2012, 8353: 83531T.

【71】Filis A, Haim Z B, Havatzelet T, et al. RICOR’s Rotary Cryocoolers Development and Optimization for HOT IR detectors [C]. SPIE, 2012, 8353: 83531U.

引用该论文

WANG Yi-feng,LIU Ping. On the High Operating Temperature Mercury Cadmium Telluride Infrared Detector (II)[J]. INFRARED, 2014, 35(10): 7-13

王忆锋,刘萍. 论高工作温度碲镉汞红外探测器(下)[J]. 红外, 2014, 35(10): 7-13

被引情况

【1】王鑫,周立庆,谭振. 制冷型大面阵红外探测器研制进展. 红外, 2019, 40(12): 1-9

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF