首页 > 论文 > 中国激光 > 42卷 > 1期(pp:109001--1)

基于彩色二进制局部不变特征的图像配准

Color Image Registration Based on Colored Binary Local Invariant Descriptor

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

提出了一种适用于彩色图像的局部不变特征配准方法。特征点提取阶段,提出了快速分割测试特征颜色差异(CDoFAST)特征点检测方法,计算图像的颜色不变量,以此为输入在尺度空间检测FAST 极值点,在极值点附近对高斯差分算子(DoG)值进行插值和拟合,以最终确定特征点的位置和尺度。特征描述符生成阶段,提出了一种新的彩色二进制局部不变特征(CBLID),采样点邻域结构类似于人眼视觉的重叠,通过统计方向图生成二进制链码,具备旋转、尺度缩放、光照不变性和抗噪性能。通过计算汉明距离进行匹配并结合随机抽样一致性(RANSAC)算法去除误匹配点,计算出待配准图像间的变换关系。实验表明,所提算法针对彩色图像能够获得比传统的尺度不变特征变换(SIFT)、快速稳健特征(SURF)和DAISY 更高的配准精度,同时算法的运行时间也较短,在测试图片上耗时仅为SIFT的10%和12%。

Abstract

A novel local invariant feature based image registration method for color image is proposed. In the stage of feature point extraction, a new method named colored difference of features from accelerated segment test (CDoFAST) is proposed. The color invariant value of the image is calculated, and FAST extreme points in scale space are searched. The difference of Gaussian (DoG) value around the extreme points are interpolated and fitted to determine the location and scale of the feature points. In the stage of feature vector extraction, a new colored binary local invariant descriptor (CBLID) is proposed. Its sample pattern is similar to the human visual overlap. By generating binary chain code using the statistics of orientation maps, the descriptor is invariant to rotation, scaling, illumination changes and is robust to noise. The feature vectors are matched by calculating their hamming distance and eliminating wrong matches by random sample consensus (RANSAC). Then the transform matrix between the reference image and the registered image is calculated. The experimental results indicate that the proposed method outperforms other classical methods such as scale invariant feature transform (SIFT), speed up robust feature (SURF) and DAISY in registration accuracy and cost time. The cost time of the proposed method in processing the experimental images are only 10% and 12% of that cost in SIFT.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TP391

DOI:10.3788/cjl201542.0109001

所属栏目:全息与信息处理

基金项目:长春市科技计划(2013270)、吉林省科技发展计划(20126015)

收稿日期:--

修改稿日期:--

网络出版日期:--

作者单位    点击查看

王灿进:中国科学院长春光学精密机械与物理研究所激光与物质相互作用国家重点实验室, 吉林 长春 130033中国科学院大学, 北京 100049
孙涛:中国科学院长春光学精密机械与物理研究所激光与物质相互作用国家重点实验室, 吉林 长春 130033
王锐:中国科学院长春光学精密机械与物理研究所激光与物质相互作用国家重点实验室, 吉林 长春 130033
王挺峰:中国科学院长春光学精密机械与物理研究所激光与物质相互作用国家重点实验室, 吉林 长春 130033
陈娟:中国科学院长春光学精密机械与物理研究所激光与物质相互作用国家重点实验室, 吉林 长春 130033

联系人作者:王灿进(wcjpsh@126.com)

备注:王灿进(1987—),男,博士研究生,主要从事激光主动成像模式识别方面的研究。

【1】Yu Xianchuan, Lü Zhonghua, Hu Dan. Review of remote sensing image registration techniques[J]. Optics and Precision Engineering, 2013, 21(11): 2960-2972.
余先川, 吕中华, 胡丹. 遥感图像配准技术综述[J]. 光学 精密工程, 2013, 21(11): 2960-2972.

【2】Yi Meng, Guo Baolong, Zhang Xu. Image restoration based on complex Zernike moment phase angle estimation[J]. Optics and Precision Engineering, 2012, 20(5): 1117-1125.
易盟, 郭宝龙, 张旭. 基于复合Zernike矩相角估计的图像配准[J]. 光学 精密工程, 2012, 20(5): 1117-1125.

【3】Wang Canjin, Sun Tao, Chen Juan. A novel target recognition method based on FREAK descriptor for laser active imaging[J]. Chinese J Lasers, 2014, 41(3): 0309004.
王灿进, 孙涛, 陈娟. 基于快速视网膜关键点局部不变特征的激光主动成像自动目标识别[J]. 中国激光, 2014, 41(3): 0309004.

【4】Fu Yao, Sun Xuechen, Xue Xucheng, et al.. Panchromatic and multispectral image fusion method based on nonsubsampled contourlet transform[J]. Chinese Journal of Liquid Crystals and Displays, 2013, 28(3): 429-434.
傅瑶, 孙雪晨, 薛旭成, 等. 基于非下采样轮廓波变换的全色图像与多光谱图像融合方法研究[J]. 液晶与显示, 2013, 28(3): 429-434.

【5】D G Lowe. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91–110.

【6】H Bay, T Tuvtellars, L V Gool. SURF: Speeded up robust features[C]. Proceedings of the European Conference on Computer Vision, 2006. 404-417.

【7】E Tola, V Lepetit, P Fua. DAISY: An efficient dense descriptor applied to wide-baseline stereo[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(5): 815-830.

【8】M Calander, V Lepetit, C Strecha, et al.. BRIEF: Binary robust independent elementary features[C]. European Conference on Computer Vision, 2010. 778-792.

【9】L Stefan, C Margarita, S Roland. BRISK: Binary robust invariant scalable keypoints[C]. Proceedings of the IEEE International Conference on Computer Vision, 2011. 2548-2555.

【10】E Rublee, V Rabaud, K Konolige, et al.. Orb: An efficient alternative to sift or surf[C]. IEEE International Conference on Computer Vision, 2011. 2564-2571.

【11】A Alahi, R Ortiz, P Vandergheynst. FREAK: FAST retina keypoint[C]. Computer Version and Pattern Recognition, 2011. 510-517.

【12】Zhai You, Zeng Luan, Xiong Wei. Star matching based on invariant feature descriptor[J]. Optics and Precision Engineering, 2012, 20(11): 2531-2539.
翟优, 曾峦, 熊伟. 基于不变特征描述符实现星点匹配[J]. 光学 精密工程, 2012, 20(11): 2531-2539.

【13】Zhao Lirong, Zhu Wei, Cao Yonggang, et al.. Application of improved SURF algorithm to feature matching[J]. Optics and Precision Engineering, 2013, 21(12): 3263-3271.
赵立荣, 朱玮, 曹永刚, 等. 改进的加速鲁棒特征算法在特征匹配中的应用[J]. 光学 精密工程, 2013, 21(12): 3263-3271.

【14】Liu Zhiwen, Liu Dingsheng, Liu Peng. SIFT feature matching algorithm of multi- source remote image[J]. Optics and Precision Engineering, 2013, 21(8): 2146-2153.
刘志文, 刘定生, 刘鹏. 应用尺度不变特征变换的多源遥感影像特征点匹配[J]. 光学 精密工程, 2013, 21(8): 2146-2153.

【15】Hao Mingfei, Zhang Jianqiu, Hu Bo. A picture matching algorithm of robust hypercomplex correlation [J]. J Fudan University (Natural Science), 2007, 46(1): 91-95.
郝明非, 张建秋, 胡波. 一种超复数鲁棒相关图像配准算法[J]. 复旦学报: 自然科学版, 2007, 46(1): 91-95.

【16】Gao Fuqiang, Zhang Fan. A fast color image matching algorithm[J]. Computer Applications, 2005, 25(11): 2604-2611.
高富强, 张帆. 一种快速彩色图像匹配算法[J] . 计算机应用, 2005, 25(11): 2604-2611.

【17】Zhang Ruijuan,Zhang Jianqi,Yang Cui, et al.. Study on color image restoration technique based on CSIFT[J]. Acta Optica Sinica, 2009, 28(11): 2097-2103.
张锐娟, 张建奇, 杨翠, 等. 基于CSIFT的彩色图像配准技术研究[J]. 光学学报, 2009, 28(11): 2097-2103.

【18】Su Kexin, Han Guangliang, Sun Haijiang. Anti-viewpoint changing image matching algorithm based on SURF[J]. Chinese Journal of Liquid Crystals and Displays, 2013, 28(4): 626-632.
苏可心, 韩广良, 孙海江. 基于SURF的抗视角变换图像匹配算法[J]. 液晶与显示, 2013, 28(4):626-632.

【19】M Agrawal, K Konolige, M Blas. Censure: Center surround extremas for realtime feature detection and matching[C]. European Conference on Computer Vision, 2008. 102-115.

【20】J M Geusebroek, D B R Van, A W M Smeulders, et al.. Color invariance[J]. IEEE Transactions on Pattern analysis and Machine Intelligence, 2001, 23(12): 1338-1350.

【21】H A E Abdel, A A Farag. CSIFT: A SIFT descriptor with color invariant characteristics[C]. Computer Vision and Pattern Recognition, 2006, 2: 1978-1983.

引用该论文

Wang Canjin,Sun Tao,Wang Rui,Wang Tinfeng,Chen Juan. Color Image Registration Based on Colored Binary Local Invariant Descriptor[J]. Chinese Journal of Lasers, 2015, 42(1): 0109001

王灿进,孙涛,王锐,王挺峰,陈娟. 基于彩色二进制局部不变特征的图像配准[J]. 中国激光, 2015, 42(1): 0109001

被引情况

【1】张李俊,黄学祥,冯渭春,胡天健,梁书立. 运动重建约束角的圆位姿二义性消除方法. 光学学报, 2016, 36(1): 115002--1

【2】于施淼,卢伟,丁冬,洪德林,党晓景. 基于高光谱图像与视觉词袋模型的稻种发芽率预测研究. 激光与光电子学进展, 2016, 53(1): 11003--1

【3】于之靖,王韶彬. 改进PCA-SIFT 算法的立体匹配系统. 激光与光电子学进展, 2016, 53(3): 31501--1

【4】赵珊,王彪,唐超颖. 基于链码表示的手臂静脉特征提取与匹配. 光学学报, 2016, 36(5): 515003--1

【5】张鑫,靳雁霞,薛丹. SICA-SIFT和粒子群优化的图像匹配算法. 激光与光电子学进展, 2017, 54(9): 91002--1

【6】朱炳斐,陈文建,李武森,张峻乾. 基于Fourier-Mellin变换的液晶显示屏显示缺陷检测. 激光与光电子学进展, 2017, 54(12): 121502--1

【7】李佳,段平,姚永祥,程峰. 加速分割特征优化的图像配准方法. 激光与光电子学进展, 2019, 56(1): 11006--1

【8】刘洪普,郑梦敬,侯向丹,李柏岑,杜佳卓. 基于局部二进制模式方差的分数阶微分医学图像增强算法. 激光与光电子学进展, 2019, 56(9): 91006--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF