首页 > 论文 > 发光学报 > 36卷 > 1期(pp:1-19)

大功率半导体激光器研究进展

Development of High Power Diode Laser

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

对半导体激光器的发展历史和发展现状进行了综述, 并具体介绍了长春光学精密机械与物理研究所近年来在大功率半导体激光器方面所取得的主要进展,特别是在大功率半导体激光器的激光光源、垂直腔面发射激光器和新型激光器芯片等方面。

Abstract

This paper reviews on the history and the development status for semiconductor lasers, meanwhile focuses on the high power semiconductor laser achievements acquired by Changchun Institute of Optics, Fine Mechanics and Physics(CIOMP) in recent years, especially at the aspects of high power semiconductor laser sources, vertical cavity surface emitting lasers(VCSEL) and novel laser chips.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN248.4

DOI:10.3788/fgxb20153601.0001

所属栏目:特约报告

基金项目:国家863计划(2012AA040210);科技部重大仪器专项(2011YQ04007702);国家自然基金(61234004,61176045,61306086, 61376070, 61434005, 11404327, 61204055);吉林省科技厅项目(20140101172JC, 20130206006GX, 20140101206JC-02, 20140520132JH)资助

收稿日期:2014-10-12

修改稿日期:2014-11-16

网络出版日期:--

作者单位    点击查看

王立军:发光学及应用国家重点实验室 中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033
宁永强:发光学及应用国家重点实验室 中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033
秦莉:发光学及应用国家重点实验室 中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033
佟存柱:发光学及应用国家重点实验室 中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033
陈泳屹:发光学及应用国家重点实验室 中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033

联系人作者:王立军(wanglj@ciomp.ac.cn)

备注:王立军(1946-), 男, 吉林舒兰人, 中国科学院院士, 研究员, 博士生导师, 1982年于吉林大学获得硕士学位, 主要从事大功率半导体激光器及其应用方面的研究。

【1】Basov N G, Krokhin O N, Popo Y M. Production of negative-temperature states in p-n junctions of degenerate semiconductors [J]. Sov. Phy. JETP, 1961, 13:1320-1321.

【2】Hall R N, Fenner G E, Kingsley J D, et al. Coherent light emission from GaAs junctions [J]. Phys. Rev. Lett., 1962, 9(9):366-368.

【3】Wang Q M. Development of semiconductor laser [J]. Physics (物理), 1996, 25(2):67-75 (in Chinese).

【4】Alferov Z I, Kazarinov R F. Semiconductor laser with electric pumping: Soviet Union Patent, N181737 [P]. 1963.

【5】Kroemer H. A proposed class of heterojunction injection lasers [J]. Proc. IEEE, 1963, 51:1782-1783.

【6】Panish M B, Hayashi I, Sumski S. Double-heterostructure injection with room-temperature thresholds as low as 2 300 A/cm2 [J]. Appl. Phys. Lett., 1970, 16:326-328.

【7】Alferov Z I. Semiconductor laser with extremely low divergence of radiation [J]. Sov. Phys. Semicond., 1974, 8:541-545,

【8】Soda H, Iga K, Kitahara C, et al. GaInAsP/InP surface emitting injection lasers [J]. Jpn. J. Appl. Phys., 1979, 18(12):2329-2330.

【9】Iga K. Surface-emitting laser—Its birth and generation of new optoelectronics field [J]. IEEE J. Sel. Top. Quant. Electon., 2000, 6(6):1201-1215.

【10】Iga K, Kinoshita S, Koyama F. Microcavity GaAlAs/GaAs surface-emitting laser with Ith=6 mA [J]. Electron. Lett.,1987, 23(3):134-136.

【11】Jewell J, McCall S, Scherer A, et al. Transverse modes, waveguide dispersion and 30-ps recovery in submicron GaAs/AlAs microresonators [J]. Appl. Phys. Lett., 1989, 55(1):22-24.

【12】Koyama F, Kinoshita S, Iga K. Room-temperature continuous wave lasing characteristics of GaAs vertical cavity surface-emitting laser [J]. Appl. Phys. Lett., 1989, 55(3):221-222.

【13】Chen J, Wang J, Soderstrom D, et al. High volume 850 nm oxide VCSEL development for high bandwidth optical data link applications [J]. SPIE, 2009, 7229:722904-1-11.

【14】Kern A, Wahl D, Haidar M T, et al. Monolithic integration of VCSELs and PIN photodiodes for bidirectional data communication over standard multimode fibers [J]. SPIE, 2010, 7720:77200B-1-9.

【15】Gatto A, Boletti A, Boffi P, et al. Adjustable-chirp VCSEL-to-VCSEL injection locking for 10-Gb/s transmission at 1.55 μm [J]. Opt. Express, 2009, 17(24):21748-21753.

【16】Geib K M, Serkland D K, Keeler G A, et al. Photonics technology development for optical fuzing [J]. SPIE, 2005,5871:58710J-1-12.

【17】Shchegrov A V, Watson J P, Lee D, et al. Development of compact blue-green lasers for projection display based on Novalux extended-cavity surface-emitting laser technology [J]. SPIE, 2005, 5737:113-119.

【18】Hoghooghi N, Ozdur I, Bhooplapur S, et al. Direct demodulation and channel filtering of phase-modulated signals using an injection-locked VCSEL [J]. IEEE Photon. Technol. Lett., 2010, 22(20):1509-1511.

【19】Al-Samaneh A, Renz S, Strodl A, et al. Polarization-stable single-mode VCSELs for Cs-based MEMS atomic clock applications [J]. SPIE, 2010, 7720:772006-1-14.

【20】Stickley C M, Filipkowski M E, Parra E, et al. Super high efficiency diode sources (SHEDS) and architecture for diode high energy laser systems (ADHELS): An overview [J]. Adv. Solid-State Photon., 2006:TuA1.

【21】Stickley C M, Filipkowski M E, Parra E, et al. Overview of progress in super high efficiency diodes for pumping high energy lasers [J]. SPIE, 2006, 6104:610405-1-5.

【22】Bachmann F. Goals and status of the German national research initiative BRIOLAS (brilliant diode lasers) [J]. SPIE, 2007, 6456:PSI645608-1-11.

【23】Diehl R. High-power DiodeLasers: Fundamentals, Technology, Applications [M]. Berlin: Springer, 2000:preface.

【24】Bachmann F. Industrial applications of high power diode lasers in materials processing [J]. Appl. Surf. Sci., 2003, 208-209:125-136.

【25】Bachmann F, Loosen P, Poprawe R. High Power Diode Lasers Technology and Applications [M]. New York: Springer, 2007:535-536.

【26】Price K, Karlsen S, Leisher P, et al. High brightness fiber coupled pump laser development [J]. SPIE, 2010, 7583:758308-1-7.

【27】Bao L, Wang J, De Vito M, et al. Performance and reliability of high power 7xx nm laser diodes [J]. SPIE, 2011, 7953:79531B-1-12.

【28】Bezotosnyi V V, Bondarev V Y, Krokhin O N, et al. Laser diodes emitting up to 25 W at 808 nm [J]. Quant. Electron., 2009, 39(3):241-243

【29】Leisher P, Price K, Bashar S, et al. Mode control for high performance laser diode sources [J]. SPIE, 2008, 6952:69520C-1-11.

【30】Crump P, Blume G, Paschke K, et al. 20 W continuous wave reliable operation of 980 nm broad-area single emitter diode lasers with an aperture of 96 μm [J]. SPIE, 2009, 7198:719814-1-7.

【31】Tarasov I S, Pikhtin N A, Slipchenko S O, et al. High power CW (16 W) and pulse (145 W) laser diodes based on quantum well heterostructures [J]. Spectrochim. Acta Part A, 2007, 66(4-5):819-823.

【32】Heinemann S, Lewis B, Regaard B, et al. Single emitter based diode lasers with high brightness, high power and narrow linewidth [J]. SPIE, 2011, 7918:79180M-1-6.

【33】Duesterberg R, Xu L, Skidmore J A, et al. 100 W high-brightness multi-emitter laser pump [J]. SPIE, 2011, 7918:79180V-1-7.

【34】Gapontsev V, Moshegov N, Trubenko P, et al. High-brightness 9xx-nm pumps with wavelength stabilization [J]. SPIE, 2010, 7583:75830A-1-6.

【35】Pierer J, Lützelschwab M, Grossmann S, et al. Automated assembly processes of high power single emitter diode lasers for 100 W in 105 μm/NA 0.15 fiber module [J]. SPIE, 2011, 7918:79180I-1-9.

【36】Schrder D, Werner E, Franke A, et al. Roadmap to low cost, high brightness diode laser power out of the fiber [J]. SPIE, 2010, 7583:758309-1-5.

【37】Werner M, Wessling C, Hengesbach S, et al. 100 W/100 μm passively cooled, fiber coupled diode laser at 976 nm based on multiple 100 μm single emitters [J]. SPIE, 2009, 7198:71980P-1-7.

【38】Treusch H G, Harrison J, Morris B, et al. Compact high-brightness and high-power diode laser source for materials processing [J]. SPIE, 2000, 3945:23-31.

【39】Miyajima H, Kan H, Kanzaki T, et al. Jet-type, water-cooled heat sink that yields 255-W continuous-wave laser output at 808 nm from a 1-cm laser diode bar [J]. Opt. Lett., 2004, 29(3):304-306.

【40】Braunstein J, Mikulla M, Kiefer R, et al. 267 W CW A1GaAs/GaInAs diode laser bars [J]. SPIE, 2000, 3945:17-22.

【41】Ichtenstein N, Manz Y, Mauron P, et al. 325 watt from 1-cm wide 9xx laser bars for DPSSL- and FL-applications [J]. SPIE, 2005, 5711:1-11.

【42】Crump P, Wang J, Crum T, et al. > 360 W and > 70% efficient GaAs-based diode lasers [J]. SPIE, 2005, 5711:21-29.

【43】Lorenzen D, Schrder M, Meusel J, et al. Comparative performance studies of indium and gold-tin packaged diode laser bars [J]. SPIE, 2006, 6104:610404-1-12.

【44】Li H X, Chyr I, Jin X, et al. >700 W continuous-wave output power from single laser diode bar [J]. Electron. Lett., 2007, 43(1):27-28.

【45】Li H X, Chyr I, Brown D, et al. Ongoing development of high-efficiency and high-reliability laser diodes at spectra-physics [J]. SPIE, 2007, 6456:64560C-1-9.

【46】Schrder D, Meusel J, Hennig P, et al. Increased power of broad area lasers (808 nm/980 nm) and applicability to 10 mm-bars with up to 1 000 watt QCW [J]. SPIE, 2007, 6456:64560N-1-10.

【47】Knapczyk M T, Jacob J H, Eppich H, et al. 70% efficient, near 1 kW, single 1-cm laser-diode bar at 20 ℃ [J]. SPIE, 2011, 7918:79180F-1-6.

【48】Neukum J. Laser diodes pump up the power [J]. Nat. Photon., 2007, 1:385-386.

【49】Timmermann A, Bartoschewski D, Schlüter S, et al. Intensity increasing up to 4 MW/cm2 with BALBs via wavelengths coupling [J]. SPIE, 2009, 7198:71980X-1-10.

【50】Voss M, Meinschien J, Bruns P, et al. High brightness fibre coupled diode lasers of up to 4-kW output power for material processing [J]. SPIE, 2012, 8241:824103-1-7.

【51】Wolf P, Khler B, Rotter K, et al. High-power, high-brightness and low-weight fiber coupled diode laser device [J]. SPIE, 2011, 7918:79180O-1-9.

【52】Khler B, Segref A, Wolf P, et al. Multi-kW high-brightness fiber coupled diode laser [J]. SPIE, 2013, 8605:86050B-1-7.

【53】Strohmaier S, Tillkorn C, Olschowsky P, et al. High-power, high-brightness direct-diode lasers [J]. OPN Opt. Photon. News, 2010, 21(10):25-29.

【54】Bonati G F, Hennig P, Schmidt K, et al. Passively cooled diode laser for high power applications [J]. SPIE, 2004, 5336:71-76.

【55】Leers M, Scholz C, Boucke K, et al. Expansion-matched passively-cooled heatsinks with low thermal resistance for high-power diode laser bars [J]. SPIE, 2006, 6104:610403-1-10.

【56】Vinokurov D A, Zorina S A, Kapitonov V A, et al. High-power laser diodes based on asymmetric separate-confinement heterostructures [J]. Semiconductors, 2005, 39(3):370-373.

【57】Kanskar M, Earles T, Goodnough T, et al. High-power conversion efficiency Al-free diode lasers for pumping high-power solid-state laser systems [J]. SPIE, 2005, 5738:47-56.

【58】Peters M, Rossin V, Everett M, et al. High power, high efficiency laser diodes at JDSU [J]. SPIE, 2007, 6456:64560G-1-11.

【59】Crump P, Wenzel H, Erbert G, et al. Passively cooled TM polarized 808-nm laser bars with 70% power conversion at 80-W and 55-W peak power per 100-μm stripe width [J]. IEEE Photon. Technol. Lett., 2008, 20(16):1378-1380.

【60】Hodges A, Wang J, De Franza M, et al. A CTE matched, hard solder, passively cooled laser diode package combined with nXLTTM facet passivation enables high power, high reliability operation [J]. SPIE, 2007, 6552:65521E-1-9.

【61】Rossin V, Peters M, Zucker E, et al. Highly reliable high-power broad area laser diodes [J]. SPIE, 2006, 6104:610407-1-8.

【62】Bao L, Wang J, De Vito M, et al. Reliability of high performance 9xx-nm single emitter diode lasers [J]. SPIE, 2010, 7583:758302-1-11.

【63】Gapontsev V, Berishev I, Chuyanov V, et al. 8xx-10xx nm highly efficient single emitter pumps [J]. SPIE, 2008, 6876:68760I-1-7.

【64】Levy M, Rappaport N, Klumel G, et al. High-power single emitters for fiber laser pμmping across 8xx nm - 9xx nm wavelength bands [J]. SPIE, 2012, 8241:82410A-1-11.

【65】Pawlik S, Guarino A, Matuschek N, et al. Improved brightness on broad-area single emitter (BASE) modules [J]. SPIE, 2009, 7198:719817-1-9.

【66】Gao W, Xu Z, Cheng L, et al. High power high reliable single emitter laser diodes at 808 nm [J]. SPIE, 2007, 6456:64560B-1-8.

【67】Zorn M, Hülsewede R, Schulze H, et al. Jenoptik diode lasers and bars optimized for high-power applications in the NIR range [J]. SPIE, 2010, 7583:75830U-1-10.

【68】Crump P, Wang J, Crum T, et al. Reliable 800-nm 125 W bars and 83.5% efficient 975-nm single emitters [C]// Proceedings of The 18th Solid State and Diode Laser Technology Review, Los Angeles: IEEE, 2005:1-5.

【69】Krejci M, Gilbert Y, Müller J, et al. Power scaling of bars toward 85 mW per 1 μm stripe width reliable output power [J]. SPIE, 2009, 7198:719804-1-10,

【70】Feeler R, Junghans J, Remley J, et al. Reliability of high-power QCW arrays [J]. SPIE, 2010, 7583:758304-1-9.

【71】Fan L, Cao C, Thaler G, et al. Reliable high-power long-pulse 8xx-nm diode laser bars and arrays operating at high temperature [J]. SPIE, 2011, 7918:791805-1-11.

【72】Rossin V, Peters M, Zucker E, et al. Highly reliable high-power broad area laser diodes [J]. SPIE, 2006, 6104:610407-1-10.

【73】Gao W, Xu Z T, Cheng L S, et al. High power high reliable single emitter laser diodes at 808 nm [J]. SPIE, 2007, 6456:64560B-1-5.

【74】Xu Z T, Gao W, Cheng L S, et al. Highly reliable, high brightness, 915 nm laser diodes for fiber laser applications [J]. SPIE, 2008, 6909:69090Q-1-10.

【75】Lorenzen D, Meusel J, Schroder D, et al. Passively cooled diode lasers in the CW power range of 120 to 200 W [J]. SPIE, 2008, 6876:68760Q-1-12.

【76】Schrder D, Schrder M, Werner E, et al. Improved laser diode for high power and high temperature applications [J]. SPIE, 2009, 7198:719809-1-8.

【77】Schwertfeger S, Wiedmann J, Sumpf B, et al. 7.4 W continuous-wave output power of master oscillator power amplifier system at 1 083 nm [J]. Electron. Lett., 2006, 42(6):346-347.

【78】Wenzel H, Paschke K, Brox O, et al. 10 W continuous-wave monolithically integrated master-oscillator power-amplifier [J]. Electron. Lett., 2007, 43(3):160-162.

【79】Lammert R M, Osowski M L, Elarde V C, et al. High-power single-mode laser diodes with tapered amplifiers [C]//Proc. of IEEE LEOS, 2008:850-851.

【80】Spiessberger S, Schiemangk M, Sahm A, et al. Micro-integrated 1 watt semiconductor laser system with a linewidth of 3.6 kHz [J]. Opt. Express, 2011, 19(8):7077-7083.

【81】Feise D, Blume G, Dittrich H, et al. High-brightness 635 nm tapered diode lasers with optimized index guiding [J]. SPIE, 2010, 7583:75830V-1-12.

【82】Sumpf B, Adamiec P, Zorn M, et al. 650 nm tapered lasers with 1 W maximum output power and nearly diffraction limited beam quality at 500 mW [J]. SPIE, 2008, 6876:68760M-1-8.

【83】Sumpf B, Adamiec P, Zorn M, et al. Nearly diffraction-limited tapered lasers at 675 nm with 1-W output power and conversion efficiencies above 30% [J]. IEEE Photon. Technol. Lett., 2011, 23(4):266-268.

【84】Erbert G, Fricke J, Hülsewede R, et al. 3 W-high brightness tapered diode lasers at 735 nm based on tensile strained GaAsP-QWs [J]. SPIE, 2003, 4995:29-38.

【85】Dittmar F, Sumpf B, Fricke J, et al. High-power 808-nm tapered diode lasers with nearly diffraction-limited beam quality of M2=1.9 at P=4.4 W [J]. IEEE Photon. Technol. Lett., 2006, 18(4):601-603.

【86】Jensen O B, Klehrb A, Dittmarb F, et al. 808 nm tapered diode lasers optimised for high output power and nearly diffraction-limited beam quality in pulse mode operation [J]. SPIE, 2007, 6456:64560A-1-10.

【87】Fiebig C, Blume G, Kaspari C, et al. 12 W high-brightness single-frequency DBR tapered diode laser [J]. Electron. Lett., 2008, 44(21):1253-1254.

【88】Sumpf B, Hasler X H, Adamiec P, et al. 12.2 W output power from 1 060 nm DBR tapered lasers with narrow spectral line width and nearly diffraction limited beam quality [C]//European Conference on Lasers and Electro-Optics 2009 and The European Quantμm Electronics Conference, 2009:56-63.

【89】Fricke J, Matalla M, Paschke K, et al. Fabricating and testing of Bragg gratings for 1 060 nm α-DFB lasers [J]. SPIE, 2003, 4947:223-231

【90】Walpole J N, Donnelly J P, Taylor P J, et al. Slab-coupled 1.3-μm semiconductor laser with single-spatial large-diameter mode [J]. IEEE Photon. Technol. Lett., 2002, 14(6):756-758.

【91】Huang R K, Donnelly J P, Missaggia L J, et al. High brightness slab-coupled optical waveguide lasers [J]. SPIE, 2007, 6485:64850F-1-9.

【92】Huang R K, Chann B, Missaggia L J, et al. High-power coherent beam combination of semiconductor laser arrays [C]//Lasers and Electro-Optics, 2008 and 2008 Conference on Quantum Electronics and Laser Science, 2008:23-32.

【93】Ledentsov N N, Shchukin V A. Novel concepts for injection lasers [J]. Opt. Eng., 2002, 41(12):3193-3203.

【94】Ledentsov N N, Shchukin V A. Novel approaches to semiconductor lasers [J]. SPIE, 2002, 4905:222-234.

【95】Maximov M V, Shernyakov Y M, Novikov I I, et al. Narrow vertical beam divergence laser diode based on longitudinal photonic band crystal waveguide [J]. Electron. Lett., 2003, 39(24):1729-1731.

【96】Maximov M V, Shernyakov Y M, Novikov I I, et al. Low divergence edge-emitting laser with asymmetric waveguide based on one-dimensional photonic crystal [J]. Phys. Stat. Sol. (c), 2005, 2(2):919-922.

【97】Novikov I I, Gordeev N Y, Shernyakov Y M, et al. High-power single mode (>1 W) continuous wave operation of longitudinal photonic band crystal lasers with a narrow vertical beam divergence [J]. Appl. Phys. Lett., 2008, 92(10):103515-1-3.

【98】Shchukin V, Ledentsov N, Kalosha V, et al. Modeling of photonic crystal based high power high brightness semiconductor lasers [J]. SPIE, 2010, 7597:75971A-1-11.

【99】Karachinsky L Y, Novikov I I, Shernyakov Y M, et al. High power GaAs/AlGaAs lasers (850 nm) with ultranarrow vertical beam divergence [J]. Appl. Phys. Lett., 2006, 89(23):231114-1-3.

【100】Kettler T, Posilovic K, Schulz O, et al. Single transverse mode 850 nm GaAs/AlGaAs lasers with narrow beam divergence [J]. Electron. Lett., 2006, 42(20):1157-1158.

【101】Posilovic K, Kettler T, Shchukin V A, et al. Ultrahigh-brightness 850 nm GaAs/AlGaAs photonic crystal laser diodes [J]. Appl. Phys. Lett., 2008, 93(22):221102-1-3.

【102】Kettler T, Posilovic K, Karachinsky L Y, et al. High-brightness and ultranarrow-beam 850-nm GaAs/AlGaAs photonic band crystal lasers and single-mode arrays [J]. IEEE J. Select. Top. Quant. Electron., 2009, 15(3):901-908.

【103】Maximov M V, Shernyakov Y M, Novikov I I, et al. High power GaInP/AlGaInP visible lasers (λ=646 nm) with narrow circular shaped far-field pattern [J]. Electron. Lett., 2005, 41(13):741-742.

【104】Maximov M V, Shernyakov Y M, Novikov I I. High-performance 640-nm-range GaInP-AlGaInP lasers based on the longitudinal photonic bandgap crystal with narrow vertical beam divergence [J]. IEEE J. Quant. Electron., 2005, 41(11):1341-1348.

【105】Novikov I I, Shernyakov Y M, Maximov M V, et al. Single mode CW operation of 658 nm AlGaInP lasers based on longitudinal photonic band gap crystal [J]. Appl. Phys. Lett., 2006, 88(23):231108-1-3.

【106】Shchukin V A, Ledentsov N N, Gordeev N Y, et al. High brilliance photonic band crystal lasers [J]. SPIE, 2006, 6350:635005-1-9.

【107】Daneu V, Sanchez A, Fan T Y, et al. Spectral beam combining of a broad-stripe diode laser array in an external cavity [J]. Opt. Lett., 2000, 25(6):405-407.

【108】TeraDiode [OL]. http://teradiode.com

【109】Huang R K, Chann B, Burgess J, et al. Direct diode lasers with comparable beam quality to fiber, CO2, and solid state lasers [J]. SPIE, 2012, 8241:824102-1-11.

【110】Hecht J. Making direct laser diodes shine more brightly [J]. Laser Focus World, 2013, 48(6):21-22.

【111】Huang R K, Chann B, Missaggia L J, et al. High-brightness wavelength beam combined semiconductor laser diode arrays [J]. IEEE Photon. Technol. Lett., 2007, 19(4):209-211.

【112】Chann B, Goyal A K, Fan T Y, et al. Efficient, high-brightness wavelength-beam-combined commercial off-the-shelf diode stacks achieved by use of a wavelength-chirped volume Bragg grating [J]. Opt. Lett., 2006, 31(9):1253-1255.

【113】Roh S D, Grasso D M, Small J A. Very high brightness, fiber coupled diode lasers [J]. SPIE, 2009, 7198:71980Y-1-9.

【114】Hamilton C, Tidwell S, Meekhof D, et al. High power laser source with spectrally beam combined diode laser bars [J]. SPIE, 2004, 5336:1-10.

【115】Vijayakumar D, Jensena O B, Ostendorf R, et al. Spectral beam combining of a 980 nm tapered diode laser bar [J]. Opt. Express, 2010, 18(2):893-898.

【116】Fricke J, Bugge F, Ginolas A, et al. High-power 980-nm broad-area lasers spectrally stabilized by surface Bragg gratings [J]. IEEE Photon. Technol. Lett., 2010, 22(5):284-286.

【117】Paschke K, Spiessberger S, Kaspari C, et al. High-power distributed Bragg reflector ridge-waveguide diode laser with very small spectral linewidth [J]. Opt. Lett., 2010, 35(3):402-404.

【118】Spiessberger S, Schiemangk M, Wicht A, et al. DBR laser diodes emitting near 1 064 nm with a narrow intrinsic linewidth of 2 kHz [J]. Appl. Phys. B, 2011, 104(4):813-818.

【119】Kogelnik H, Shank C V. Coupled-wave theory of distributed feedback lasers [J]. J. Appl. Phys., 1972, 43(5):2327-2335.

【120】Nakamura M, Aiki K, Umeda J, et al. CW operation of distributed-feedback GaAs-GaAlAs diode lasers at temperatures up to 300 K [J]. Appl. Phys. Lett., 1975, 27(7):403-405.

【121】He Y, An H, Cai J, et al. 808 nm broad area DFB laser for solid-state laser pumping application [J]. Electron. Lett., 2009, 45(3):163-164.

【122】Schultz C M, Crump P, Wenzel H, et al. 11 W broad area 976 nm DFB lasers with 58% power conversion efficiency [J]. Electron. Lett., 2010, 46(8):580-581.

【123】Spiessberger S, Schiemangk M, Wicht A, et al. Narrow linewidth DFB lasers emitting near a wavelength of 1 064 nm [J]. J. Lightwave Technol., 2010, 28(7):2611-2616.

【124】Cayron C, Ligeret, Resneau V P, et al. High-power, high-reliability, and narrow linewidth, Al-free DFB laser diode, for Cs pumping (852 nm) [J]. SPIE, 2010, 7616:76160Z-1-11.

【125】Dumitrescu M, Telkkl J, Karinen J, et al. Development of high-speed directly-modulated DFB and DBR lasers with surface gratings [J]. SPIE, 2011, 7953:79530D-1-12.

【126】Venus G, Gourevitch A, Smirnov V, et al. High power volume Bragg laser bar with 10 GHz spectral bandwidth [J]. SPIE, 2008, 6952:69520D-1-5.

【127】Wenzel H, Husler K, Blume G, et al. High-power 808 nm ridge-waveguide diode lasers with very small divergence, wavelength-stabilized by an external volume Bragg grating [J]. Opt. Lett., 2009, 34(11):1627-1629.

【128】Khler B, Brand T, Haag M, et al. Wavelength stabilized high-power diode laser modules [J]. SPIE, 2009, 7198:719810-1-12.

【129】Jager R, Grabherr M, Jung C, et al. 57% wallplug efficiency oxide-confined 850 nm wavelength GaAs VCSELs [J]. Electron. Lett., 1997, 33(4):330-331.

【130】Haglund A, Gustavsson J, Vukusic J, et al. Single fundamental-mode output power exceeding 6 mW from VCSELs with a shallow surface relief [J]. IEEE Photon. Technol. Lett., 2004, 16(2):368-370.

【131】Furukawa A, Sasaki S, Hoshi M, et al. High-power single-mode vertical-cavity surface-emitting lasers with triangular holey structure [J]. Appl. Phys. Lett., 2004, 85(22):5161-5163.

【132】Westbergh P, Gustavsson J, Haglund A, et al. 32 Gbit/s multimode fibre transmission using high-speed, low current density 850 nm VCSEL [J]. Electron. Lett., 2009, 45(7):366-368.

【133】Pepeljugoski P, Kuchta D, Kwark Y, et al. 15.6-Gb/s transmission over 1 km of next generation multimode fiber [J]. IEEE Photon. Technol. Lett., 2002, 14(5):717-719.

【134】Westbergh P, Gustavsson J, Kogel B, et al. 40 Gbit/s error-free operation of oxide-confined 850 nm VCSEL [J]. Electron. Lett., 2010, 46(14):1014-1016.

【135】Moser P, Lott J, Wolf P, et al. Energy-efficient oxide-confined 850 nm VCSELs for long distance multimode fiber optical interconnects [J]. IEEE J. Select. Top. Quant. Electron., 2011, 99:1-8.

【136】Seurin J F, Xu G, Miglo A, et al. High-power vertical-cavity surface-emitting lasers for solid-state laser pumping [J]. SPIE, 2012, 8276:827609-1-10.

【137】Miller M, Grabherr M, King R, et al. Improved output performance of high-power VCSELs [J]. IEEE J. Select. Top. Quant. Electron., 2001, 7(2):210-216.

【138】Miller M, Grabherr M, Jager R, et al. High-power VCSEL arrays for emission in the watt regime at room temperature [J]. IEEE Photon. Technol. Lett., 2001, 13(3):173-175.

【139】Dasaro L A, Seurin J F, Wynn J D. High-power, high-efficiency VCSELs pursue the goal [J]. Photon. Spectra, 2005, 39(2):62-66.

【140】Seurin J F, Xu G, Guo B, et al. Efficient vertical-cavity surface-emitting lasers for infrared illumination applications [J]. SPIE, 2010, 7952, 79520G-1-10.

【141】Yan C, Ning Y, Qin L, et al. A high power InGaAs/GaAsP vertical-cavity surface-emitting laser and its temperature characteristics [J]. Semicond. Sci. Technol., 2004, 19(6):685-689.

【142】Yan C, Ning Y, Qin L, et al. High-power vertical-cavity surface-emitting laser with an extra Au layer [J]. IEEE Photon. Technol. Lett., 2005, 17(8):1599-15601.

【143】Cui J, Ning Y, Zhang Y, et al. Design and characterization of a nonuniform linear vertical-cavity surface-emitting laser array with a Gaussian far-field distribution [J]. Appl. Opt., 2009, 48(18):3317-3321.

【144】Zhang J, Ning Y Q, Zeng Y G, et al. Design and analysis of high-temperature operating 795 nm VCSELs for chip-scale atomic clocks [J]. Laser Phys. Lett., 2013, 10(4):045802-1-7.

【145】Zhang J W, Ning Y Q, Zhang X, et al. High-peak-power vertical-cavity surface-emitting laser quasi-array realized using optimized large-aperture single emitters [J]. Jpn. J. Appl. Phys., 2014, 53(7):070303-1-5.

引用该论文

WANG Li-jun,NING Yong-qiang,QIN Li,TONG Cun-zhu,CHEN Yong-yi. Development of High Power Diode Laser[J]. Chinese Journal of Luminescence, 2015, 36(1): 1-19

王立军,宁永强,秦莉,佟存柱,陈泳屹. 大功率半导体激光器研究进展[J]. 发光学报, 2015, 36(1): 1-19

被引情况

【1】朱心宇,王国政,王 蓟,马 威,张 野,张 辰,陈 明. 大直径光纤端帽的制作与熔接. 发光学报, 2015, 36(7): 801-805

【2】李雅静,彭海涛. 808 nm大功率半导体激光器可靠性分析. 光电技术应用, 2015, 30(4): 5-7

【3】王鑫,王翠鸾,吴霞,朱凌妮,马骁宇,刘素平. GaAs基高功率半导体激光器单管耦合研究. 发光学报, 2015, 36(9): 1018-1021

【4】付喜宏. LD 泵浦全固态 608.1 nm 和频激光器. 中国光学, 2015, 8(5): 794-799

【5】井红旗,仲莉,倪羽茜,张俊杰,刘素平,马骁宇. 高功率密度激光二极管叠层散热结构的热分析. 发光学报, 2016, 37(1): 81-87

【6】田 锟,邹永刚,马晓辉,郝永芹,关宝璐,侯林宝. 面发射分布反馈半导体激光器. 中国光学, 2016, 9(1): 51-64

【7】贾冠男,尧 舜,高祥宇,兰 天,邱运涛,王智勇. 热容型大功率半导体激光器瞬态热特性. 发光学报, 2016, 37(4): 422-427

【8】刘丽杰,吴远大,王 玥,安俊明,胡雄伟,王 佐. 1 310 nm垂直腔面发射激光器芯片制备技术的研究进展. 发光学报, 2016, 37(7): 809-815

【9】吴璇子,郭树旭,羊超,关健,田超,曹军胜,郜峰利. 低偏置电流下半导体激光器1/f噪声的相关性. 光子学报, 2016, 45(6): 614002--1

【10】崔巍,苏建加,姜培培,吴波,沈永行. 基于可调谐半导体激光器的高分辨率多路复用光纤光栅波长解调系统. 光子学报, 2016, 45(7): 70706003--1

【11】赵红东,彭晓灿,马 俐,孙 梅. 注入电流引起质子轰击VCSEL中的模式竞争. 发光学报, 2016, 37(8): 996-1001

【12】杨欣,陈建军,吴正茂,夏光琼,黄守文,邓涛. 光电负反馈下1 550 nm垂直腔表面发射激光器的动力学特性. 光子学报, 2016, 45(8): 814004--1

【13】宋志强,王伟涛,祁海峰,郭健,倪家升,王昌. 分布反馈光纤激光器封装工艺. 光子学报, 2016, 45(8): 814005--1

【14】董 剑,刘学胜,司汉英,彭 超,刘友强,曹明真,王智勇. 350 mJ LD侧面抽运Nd:YAG无水冷调Q激光器. 中国激光, 2016, 43(11): 1101005--1

【15】李文智,韦成华,高丽红,马 壮,王富耻,吴涛涛. 散射光信号与石墨-二氧化硅激光辐照烧蚀阈值的关系. 中国光学, 2016, 9(6): 642-648

【16】杨宏宇,舒世立,刘 林,乔岩欣. 半导体激光器模块散热特性影响因素分析. 半导体光电, 2016, 37(6): 770-775

【17】王直圆,陈 超,单肖楠,秦 莉,张 星,陈泳屹,梁 磊,贾 鹏,宁永强. 光纤光栅外腔半导体激光器噪声特性仿真. 激光与光电子学进展, 2017, 54(1): 11401--1

【18】王文知,井红旗,祁 琼,王翠鸾,倪羽茜,刘素平,马骁宇. 大功率半导体激光器可靠性研究和失效分析. 发光学报, 2017, 38(2): 165-169

【19】冯 源,郝永芹,王宪涛,刘国军,晏长岭,张家斌,李再金,李 洋. 850 nm垂直腔面发射激光器结构优化与制备. 中国激光, 2017, 44(3): 301005--1

【20】王亚楠,李耀耀,王 朋,曹春芳,朱忠赟珅,王庶民. 锗基InAs量子点激光器的腔面失效及再生的研究. 半导体光电, 2017, 38(1): 8-11

【21】廖翌如,关宝璐,李建军,刘储,米国鑫,徐晨. 低阈值852 nm半导体激光器的温度特性. 发光学报, 2017, 38(3): 331-337

【22】海一娜,邹永刚,田锟,马晓辉,王海珠,范杰,白云峰. 水平腔面发射半导体激光器研究进展. 中国光学, 2017, 10(2): 194-206

【23】马琛,马壮,高丽红,王富耻. 激光对鳞片石墨改性酚醛树脂涂层的损伤机理. 中国光学, 2017, 10(2): 249-255

【24】郑 翔,赵柏秦. 用于周向探测的均匀配光非球面柱透镜设计. 光学学报, 2017, 37(5): 522003--1

【25】孔真真,崔碧峰,黄欣竹,李 莎,房天啸,郝 帅. 大功率半导体激光器性能改善的研究. 激光与光电子学进展, 2017, 54(7): 71403--1

【26】王直圆,陈超,单肖楠,张星,陈泳屹,高峰,杜悦宁,秦莉,宁永强. 外部光反馈半导体激光器的结构优化研究. 半导体光电, 2017, 38(4): 472-477

【27】吴翔宇,崔碧峰. 氧化孔径限制垂直腔面发射激光器的电极优化. 激光与光电子学进展, 2017, 54(10): 101402--1

【28】鲁瑶,聂志强,陈天奇,张普,熊玲玲,吴的海,李小宁,王贞福,刘兴胜. 传导冷却单巴高功率半导体激光器热应力和smile研究. 光子学报, 2017, 46(9): 914001--1

【29】李沛旭,殷方军,张成山,开北超,孙素娟,江建民,夏伟,徐现刚. 808 nm连续输出13.6 W单芯片大功率激光器. 中国激光, 2018, 45(1): 101013--1

【30】许成文,钟理京,秦应雄,郭海平,唐霞辉. 激光表面改性3 kW 半导体激光器矩形光斑聚焦系统研究. 中国激光, 2016, 43(1): 102001--1

【31】刘力宁,高欣,张晓磊,张哲铭,顾华欣,徐雨萌,乔忠良,薄报学. 高亮度大功率半导体激光器光纤耦合模块. 发光学报, 2018, 39(2): 196-201

【32】刘翠翠,王 鑫,井红旗,吴 霞,王翠鸾,马骁宇. 三波长合束单管激光器光纤耦合模块设计. 发光学报, 2018, 39(3): 337-342

【33】张哲铭,薄报学,张晓磊,顾华欣,刘力宁,徐雨萌,乔忠良,高 欣. 半导体激光器巴条封装应力及评价. 发光学报, 2018, 39(3): 343-348

【34】李玉娇,宗楠,彭钦军. 垂直腔面发射半导体激光器的特性及其研究现状. 激光与光电子学进展, 2018, 55(5): 50006--1

【35】董剑,刘学胜,司汉英,彭超,曹明真,何欢,刘友强,王智勇. 700 mJ紧凑型激光二极管抽运Nd∶YAG主振荡功率放大系统. 中国激光, 2018, 45(5): 501004--1

【36】仇伯仓,胡海,汪卫敏,刘文斌,白雪. 12 W高功率高可靠性915 nm半导体激光器设计与制作. 中国光学, 2018, 11(4): 590-603

【37】宋健,高欣,闫宏宇,张晓磊,张哲铭,徐雨萌,顾华欣,刘力宁,薄报学. 大功率半导体激光器波导热透镜效应及对慢轴光束发散角的影响. 中国激光, 2018, 45(10): 1005004--1

【38】刘翠翠,井红旗,倪羽茜,王 鑫,吴 霞,马骁宇. 915 nm/974 nm单发射区半导体激光器光纤耦合模块设计. 发光学报, 2018, 39(11): 1598-1603

【39】李 颖,周广正,兰 天,王智勇. 垂直腔面发射激光器湿法氧化工艺的实验研究. 发光学报, 2018, 39(12): 1714-1721

【40】袁庆贺,井红旗,张秋月,仲莉,刘素平,马骁宇. 砷化镓基近红外大功率半导体激光器的发展及应用. 激光与光电子学进展, 2019, 56(4): 40003--1

【41】袁庆贺,张秋月,井红旗,仲 莉,刘素平,马骁宇. 管式炉中半导体激光器巴条Au80Sn20焊料封装研究. 发光学报, 2019, 40(2): 231-237

【42】范杰,龚春阳,杨晶晶,邹永刚,马晓辉. 分布布拉格反射器半导体激光器的研究进展. 激光与光电子学进展, 2019, 56(6): 60003--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF