首页 > 论文 > 激光与光电子学进展 > 52卷 > 3期(pp:30001--1)

基于硫系玻璃光纤的红外超连续谱的研究进展

Research Progress of Infrared Supercontinuum Generation in Chalcogenide Glass Fibers

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

硫系玻璃具有极宽的红外透射范围、极高的线性和非线性折射率。近年来,硫系玻璃光纤由于其红外超连续(SC)谱在传感、安全与国防方面的潜在应用价值,引起了极大的关注。回顾了硫系玻璃光纤中产生SC 谱的研究历程,包括硫系微结构光纤SC 谱输出、硫系拉锥光纤SC 谱输出以及硫系光纤结构设计,指出了研究中存在的问题,并对其发展前景进行了展望。

Abstract

Chalcogenide glasses have a very wide range of infrared transmittance, extremely high linear and nonlinear refractive index. Recently, infrared supercontinuum (SC) generation in chalcogenide glass fibers attracts extensive attentions for its potential applications in sensing, security and defense. In this article, the research progress of infrared SC generation in chalcogenide glass fibers is reviewed, including the SC generation of chalcogenide tapered fiber and microstructured fibers, and the new fiber structure design for SC generation. Moreover, current problems in exploring SC generation are summarized, and their potential applications are discussed.

中国激光微信矩阵
补充资料

中图分类号:TN253;TN213

DOI:10.3788/lop52.030001

所属栏目:综述

基金项目:国家自然科学基金(61435009)、宁波市新型光电功能材料及器件创新团队项目(2009B21007)、宁波大学王宽诚幸福基金

收稿日期:2014-08-18

修改稿日期:2014-09-18

网络出版日期:2015-02-12

作者单位    点击查看

汪翠:宁波大学高等技术研究院红外材料及器件实验室, 浙江 宁波 315211
戴世勋:宁波大学高等技术研究院红外材料及器件实验室, 浙江 宁波 315211
张培晴:宁波大学高等技术研究院红外材料及器件实验室, 浙江 宁波 315211
张斌:国防科技大学光电科学与工程学院, 湖南 长沙 410073
王训四:宁波大学高等技术研究院红外材料及器件实验室, 浙江 宁波 315211
沈祥:宁波大学高等技术研究院红外材料及器件实验室, 浙江 宁波 315211
侯静:国防科技大学光电科学与工程学院, 湖南 长沙 410073
王荣平:澳大利亚国立大学物理与工程学院激光物理中心, 堪培拉 ACT0200
陶光明:美国中佛罗里达大学光学与光电子学院, 佛罗里达 奥兰多 32816

联系人作者:汪翠(1072439302@qq.com)

备注:汪翠(1990—),女,硕士研究生,主要从事硫系光纤超连续谱等方面的研究。

【1】R R Alfano, S L Shapiro. Observation of self-phase modulation and small-scale filaments in crystals and glasses[J]. Physical Review Letters, 1970, 24(11): 592.

【2】Yang Weiqiang, Zhang Bin, Xue Guanghui, et al.. 13 W all fiber mid-infrared supercontinuum source[J]. Chinese J Lasers, 2014, 41(3): 0305001.
杨未强, 张斌, 薛光辉, 等. 13 W 全光纤中红外超连续谱光源[J]. 中国激光, 2014, 41(3): 0305001.

【3】J G Daly. Mid-infrared laser applications[C]. Optics, Electro-Optics, and Laser Applications in Science and Engineering, 1991: 94-99.

【4】R W Waynant, I K Ilev, I Gannot. Mid–infrared laser applications in medicine and biology[J]. Philosophical Transactions of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 2001, 359(1780): 635-644.

【5】P Werle, F Slemr, K Maurer, et al.. Near-and mid-infrared laser-optical sensors for gas analysis[J]. Optics and Lasers in Engineering, 2002, 37(2): 101-114.

【6】Y Yu, X Gai, T Wang, et al.. Mid-infrared supercontinuum generation in chalcogenides[J]. Optical Materials Express, 2013, 3(8): 1075-1086.

【7】U Willer, M Saraji, A Khorsandi, et al.. Near-and mid-infrared laser monitoring of industrial processes, environment and security applications[J]. Optics and Lasers in Engineering, 2006, 44(7): 699-710.

【8】V Kumar, A George, W Reeves, et al.. Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation[J]. Opt Express, 2002, 10(25): 1520-1525.

【9】D D Hudson, E C Magi, A C Judge, et al.. Highly nonlinear chalcogenide glass micro/nanofiber devices: Design, theory, and octave-spanning spectral generation[J]. Opt Commun, 2012, 285(23): 4660-4669.

【10】S Fujino, K Morinaga. Material dispersion and its compositional parameter of oxide glasses[J]. Journal of Non-Crystalline Solids, 1997, 222: 316-320.

【11】P France, S Carter, M Moore, et al.. Progress in fluoride fibres for optical communications[J]. British Telecom Technology Journal, 1987, 5(2): 28-44.

【12】S R Friberg, P W Smith. Nonlinear optical glasses for ultrafast optical switches[J]. Quantum Electronics, IEEE Journal of, 1987, 23(12): 2089-2094.

【13】E Vogel, M Weber, D Krol. Nonlinear optical phenomena in glass[J]. Physics and Chemistry of Glasses, 1991, 32(6): 231-254.

【14】S Shabahang, G Tao, M P Marquez, et al.. Low threshold supercontinuum generation in highly nonlinear robust stepindex chalcogenide nanotapers[C]. Frontiers in Optics, 2013: FTu5B.2.

【15】D P Wei, T Galstian, I Smolnikov, et al.. Spectral broadening of femtosecond pulses in a single-mode As-S glass fiber [J]. Opt Express, 2005, 13(7): 2439-2443.

【16】M El-Amraoui, G Gadret, J Jules, et al.. Microstructured chalcogenide optical fibers from As2S3 glass: towards new IR broadband sources[J]. Opt Express, 2010, 18(25): 26655-26665.

【17】L Shaw, P Thielen, F Kung, et al.. IR supercontinuum generation in As-Se photonic crystal fiber[C]. Conf Adv Solid State Lasers (ASSL), Seattle, WA, 2005: TuC5.

【18】R R Gattass, L Brandon Shaw, V Nguyen, et al.. All-fiber chalcogenide-based mid-infrared supercontinuum source[J]. Optical Fiber Technology, 2012, 18(5): 345-348.

【19】A Heidt, J Price, C Baskiotis, et al.. Mid-infrared ZBLAN fiber supercontinuum source using picosecond diodepumping at 2 mm[J]. Opt Express, 2013, 21(20): 24281-24287.

【20】A Tuniz, G Brawley, D Moss, et al.. Two-photon absorption effects on Raman gain in single mode As2Se3 chalcogenide glass fiber[J]. Opt Express, 2008, 16(22): 18524-18534.

【21】W Gao, Z Duan, K Asano, et al.. Mid-infrared supercontinuum generation in a four-hole As2S5 chalcogenide microstructured optical fiber[J]. Applied Physics B: Lasers and Optics, 2014, 116(4): 847-853.

【22】U Moller, Y Yu, C R Petersen, et al.. High average power mid-infrared supercontinuum generation in a suspended core chalcogenide fiber[C]. Nonlinear Photonics, 2014: JM5A. 54.

【23】A Marandi, C W Rudy, V G Plotnichenko, et al.. Mid-infrared supercontinuum generation in tapered chalcogenide fiber for producing octave-spanning frequency comb around 3 mm[J]. Opt Express, 2012, 20(22): 24218-24225.

【24】R R Gattass, L Brandon Shaw, V Nguyen, et al.. All-fiber chalcogenide-based mid-infrared supercontinuum source[J]. Optical Fiber Technology, 2012, 18(5): 345-348.

【25】I Savelii, O Mouawad, J Fatome, et al.. Mid-infrared 2000-nm bandwidth supercontinuum generation in suspendedcore microstructured Sulfide and Tellurite optical fibers[J]. Opt Express, 2012, 20(24): 27083-27093.

【26】S Shabahang, M P Marquez, G Tao, et al.. Octave-spanning infrared supercontinuum generation in robust chalcogenide nanotapers using picosecond pulses[J]. Opt Letters, 2012, 37(22): 4639-4641.

【27】Shi Chunzheng, Li Min, Liao Yanbiao, et al.. Dispersion measurement of As2S3 fiber[J]. Acta Optica Sinica, 2002, 22(5): 535-538.
施纯峥, 黎敏, 廖延彪, 等. 硫系光纤的色散测量[J]. 光学学报, 2002, 22(5): 535-538.

【28】Q Zhang, M Li, Q Hao, et al.. Fabrication and characterization of on-chip optical nonlinear chalcogenide nanofiber devices[J]. Opt Lett, 2010, 35(22): 3829-3831.

【29】C Lin, H Tao, X Zheng, et al.. Second-harmonic generation in IR-transparent β -GeS2 crystallized glasses[J]. Opt Lett, 2009, 34(4): 437-439.

【30】G Yang, H Jain, A Ganjoo, et al.. A photo-stable chalcogenide glass[J]. Opt Express, 2008, 16(14): 10565-10571.

【31】G Lenz, J Zimmermann, T Katsufuji, et al.. Large Kerr effect in bulk Se-based chalcogenide glasses[J]. Opt Lett, 2000, 25(4): 254-256.

【32】A Jin, Z Wang, J Hou, et al.. Mid-infrared supercontinuum generation in arsenic trisulfide microstructured optical fibers[C]. SPIE/OSA/IEEE Asia Communications and Photonics, 2011, 8307: 83070V.

【33】Wang Xiaoyan, Li Shuguang, Liu Shuo, et al.. Mid-infrared As2S3 chalcogenide glass broadband normal dispersion photonic crystal fiber with high birefringence and high nonlinearity[J]. Acta Physica Sinica, 2011, 60(6): 367-372.
王晓琰, 李曙光, 刘硕, 等. 中红外高双折射高非线性宽带正常色散As2S3光子晶体光纤[J]. 物理学报, 2011, 60(6): 367-372.

【34】Xia Lanye, Wen Jianguo, Zhao Chujun, et al.. Mid-infrared supercontinuum generation from microstructured chalcogenide fibers[J]. Laser & Optoelectronics Progress, 2011, 48(4): 67-71.
夏兰叶, 文建国, 赵楚军, 等. 微结构硫化物光纤中中红外超连续谱的产生[J]. 激光与光电子学进展, 2011, 48(4): 67-71.

【35】Yang Peilong, Dai Shixun, Yi Changshen, et al.. Design and performance of mid-IR disp ersion in photonic crystal fiber prepared from a flattened chalcogenide glass[J]. Acta Physica Sinic, 2014, 63(1): 014210.
杨佩龙, 戴世勋, 易昌申, 等. 中红外色散平坦硫系光子晶体光纤设计及性能研究[J]. 物理学报, 2014, 63(1): 014210.

【36】S Wei, Y Xu, S Dai, et al.. Theoretical studies on mid-infrared amplification in Ho3+-doped chalcogenide glass fibers[J]. Physica B: Condensed Matter, 2013, 416: 64-68.

【37】C Yi, P Zhang, F Chen, et al.. Fabrication and characterization of Ge20Sb15S65 chalcogenide glass for photonic crystal fibers[J]. Applied Physics B, 2014, 116(3): 653-658.

【38】Lü Sheqin, Li Chaoran, Wu Yuehao, et al.. Research progress of micro/nano-optical device based on chalcogenide glass [J]. Laser & Optoelectronics Progress, 2014, 51(5): 050001.
吕社钦, 李超然, 吴越豪, 等. 硫系玻璃微纳光器件研究进展[J]. 激光与光电子学进展, 2014, 51(5): 050001.

【39】Cao Fengzhen, Zhang Peiqing, Dai Shixun, et al.. Research of high nonlinear chalcogenide photonic crystal fiber[J]. Laser & Optoelectronics Progress, 2013, 50(6): 060003.
曹凤珍, 张培晴, 戴世勋, 等. 高非线性硫系玻璃光子晶体光纤研究进展[J]. 激光与光电子学进展, 2013, 50(6): 060003.

【40】J Sanghera, C Florea, L Shaw, et al.. Non-linear properties of chalcogenide glasses and fibers[J]. Journal of Non-Crystalline Solids, 2008, 354(2): 462-467.

【41】J Fatome, C Fortier, T N Nguyen, et al.. Linear and nonlinear characterizations of chalcogenide photonic crystal fibers [J]. Journal of Lightwave Technology, 2009, 27(11): 1707-1715.

【42】M El-Amraoui, J Fatome, J C Jules, et al.. Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers[J]. Opt Express, 2010, 18(5): 4547-4556.

【43】M El-Amraoui, G Gadret, J C Jules, et al.. Microstructured chalcogenide optical fibers from As2S3 glass: towards new IR broadband sources[J]. Opt Express, 2010, 18(25): 26655-26665.

【44】W Gao, M El Amraoui, M Liao, et al.. Mid-infrared supercontinuum generation in a suspended-core As2S3 chalcogenide microstructured optical fiber[J]. Opt Express, 2013, 21(8): 9573-9583.

【45】M Liao, C Chaudhari, G Qin, et al.. Fabrication and characterization of a chalcogenide-tellurite composite microstructure fiber with high nonlinearity[J]. Opt Express, 2009, 17(24): 21608-21614.

【46】D I Yeom, E C Magi, M R E Lamont, et al.. Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires[J]. Opt Letters, 2008, 33(7): 660-662.

【47】A Marandi, C W Rudy, N C Leindecker, et al.. Mid-infrared supercontinuum generation from 2.4 mm to 4.6 mm in tapered chalcogenide fiber[C]. Conference on Lasers and Electro-Optics, 2012: CTh4B.5.

【48】J H V Price, T M Monro, H Ebendorff-Heidepriem, et al.. Non-silica microstructured optical fibers for mid-IR supercontinuum generation from 2 mm~5 mm[C]. SPIE, 2006, 6102: 61020A.

【49】S Roy, P Roy Chaudhuri. Supercontinuum generation in visible to mid-infrared region in square-lattice photonic crystal fiber made from highly nonlinear glasses[J]. Opt Commun, 2009, 282(17): 3448-3455.

【50】J Hu, C R Menyuk, L B Shaw, et al.. Maximizing the bandwidth of supercontinuum generation in As2Se3 chalcogenide fibers[J]. Opt Express, 2010, 18(7): 6722-6739.

【51】R J Weiblen, A Docherty, J Hu, et al.. Calculation of the expected bandwidth for a mid-infrared supercontinuum source based on As2S3 chalcogenide photonic crystal fibers[J]. Opt Express, 2010, 18(25): 26666-26674.

【52】A Jin, Z Wang, J Hou, et al.. Mid-infrared supercontinuum generation in arsenic trisulfide microstructured optical fibers[C]. SPIE, 2011, 8307: 83070V.

【53】W Yuan. 2-10 mm Mid-infrared supercontinuum generation in As2Se3 photonic crystal fiber[C]. Frontiers in Optics, 2013: FTu5B.3.

【54】B Ung, M Skorobogatiy. Chalcogenide microporous fibers for linear and nonlinear applications in the mid-infrared[J]. Opt Express, 2010, 18(8): 8647-8659.

【55】A Ben Salem, R Cherif, M Zghal. Tapered As2S3 chalcogenide photonic crystal fiber for broadband mid-infrared supercontinuum generation[C]. Frontiers in Optics, 2011: FMG6.

引用该论文

Wang Cui,Dai Shixun,Zhang Peiqing,Zhang Bin,Wang Xunsi,Shen Xiang,Hou Jing,Wang Rongping,Tao Guangming. Research Progress of Infrared Supercontinuum Generation in Chalcogenide Glass Fibers[J]. Laser & Optoelectronics Progress, 2015, 52(3): 030001

汪翠,戴世勋,张培晴,张斌,王训四,沈祥,侯静,王荣平,陶光明. 基于硫系玻璃光纤的红外超连续谱的研究进展[J]. 激光与光电子学进展, 2015, 52(3): 030001

被引情况

【1】汪翠,戴世勋,杨佩龙,张培晴,王训四,刘自军,陈飞飞,沈祥,聂秋华. 基于硫系玻璃/碲酸盐玻璃复合微结构光纤的红外超连续谱输出特性研究. 光学学报, 2015, 35(8): 816003--1

【2】孙礼红,王训四,祝清德,刘硕,潘章豪,程辞,廖方兴,陈飞飞,戴世勋. 高非线性硫系玻璃开发及其理论研究进展. 激光与光电子学进展, 2016, 53(2): 20001--1

【3】刘丽,徐铁峰,戴振祥,刘太君,戴世勋,王训四,张秀普. 四波混频光生毫米波技术研究进展. 激光与光电子学进展, 2016, 53(5): 50001--1

【4】陈亚丽,杨伟兵. 中红外双零色散全固硫系微结构光纤. 激光与光电子学进展, 2016, 53(6): 60605--1

【5】王莹莹,戴世勋,罗宝华,张培晴,王训四,刘自军. 硫系光纤红外超连续谱输出研究进展. 激光与光电子学进展, 2016, 53(9): 90005--1

【6】刘硕,唐俊州,刘自军,江岭,吴波,密楠,王训四,赵浙明,聂秋华,戴世勋,潘章豪. 低损耗硫系玻璃光纤的挤压制备及其性能研究. 光学学报, 2016, 36(10): 1006002--1

【7】田翠萍,汪滢莹,师红星,程昭晨,王璞. 基于液芯光纤的中红外拉曼激光光源. 激光与光电子学进展, 2017, 54(5): 51405--1

【8】戴世勋,王敏,王莹莹,徐路路,胡尊凤,张培晴,王训四. 基于硫系玻璃光纤的中红外超连续谱产生研究进展. 激光与光电子学进展, 2020, 57(7): 71603--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF