中国激光, 2015, 42 (4): 0415002, 网络出版: 2015-04-08   

不同谐振状态下弹光调制器的品质因数分析

Quality Factor Analysis of Photoelastic Modulation with Different Resonant State
作者单位
1 中北大学仪器科学与动态测试教育部重点实验室, 山西 太原 030051
2 中北大学信息与通信工程学院, 山西 太原 030051
3 中北大学电子测试技术国家重点实验室, 山西 太原 030051
摘要
为了提高弹光调制器在高压驱动下的工作效率,以提高傅里叶变换光谱仪的光谱分辨率,在建立弹光调制器的损耗模型和振动方程的基础上,描述了包含损耗因数的弹光调制器幅频特性,并推导了谐振和反谐振频率下弹光调制器的品质因数。结合压电材料的电致伸缩效应及其损耗,分析了高压驱动下各损耗因数之间的关系,提出了一种较谐振驱动具有更高品质因数和调制深度的反谐振驱动方法。实验验证,当驱动电压在500~1200 VP-P范围内,反谐振驱动方法较传统的谐振驱动方式,品质因数和调制深度均提高了43%,有效地提高了弹光调制器的工作效率。
Abstract
In order to improve the efficiency of photoelastic modulation under the high driving voltage, the spectral resolution of Fourier transform spectrometer is improved. Wasting model and vibration equation are established to describe the amplitude-frequency characteristics of photoelastic modulator, including the loss factors, and its quality factor is deduced under the condition of resonant frenquency matching and anti- resonant frenquency matching. The relationship between loss factors is analyzed under high dirving-voltage by combining electrostrictive effect and its loss of piezoelectric material, then anti-resonant frequency driving method is presented, whose quality factor and modulation depth are higher than resonant frequency driving method. Experimental results show that when the drive voltage is in the range of 500~1200 Vp- p, quality factor and modulation depth of anti- resonant frequency driving method can be improved 43% compared with resonant frenquency driving. Thus, anti-resonant frequency driving method can improve the efficiency of photoelastic modulation.

张敏娟, 王艳超, 王召巴, 王志斌, 王国梁. 不同谐振状态下弹光调制器的品质因数分析[J]. 中国激光, 2015, 42(4): 0415002. Zhang Minjuan, Wang Yanchao, Wang Zhaoba, Wang Zhibin, Wang Guoliang. Quality Factor Analysis of Photoelastic Modulation with Different Resonant State[J]. Chinese Journal of Lasers, 2015, 42(4): 0415002.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!