首页 > 论文 > 中国激光 > 42卷 > 7期(pp:702009--1)

Nd∶YVO4双频微片激光器的模式竞争研究

Investigation of Mode Competition in Dual-Frequency Nd∶YVO4 Microchip Laser

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

研究了双纵模双频微片激光器两模式之间的竞争效应,确定了在具有不同反射率输出镜的双频激光器腔内,模式之间的自饱和与交叉饱和系数的量值。在研究过程中,待定自饱和系数β与交叉饱和系数θ,建立双频微片激光器的耦合速率方程,仿真获得具有不同反射率输出镜的双频激光器输出相对功率并绘制其包络曲线。在实验中,通过改变激光器的腔参数获得双频激光的输出功率图谱,对比仿真得到的功率包络曲线来确定自饱和系数和交叉饱和系数。结果表明,当输出镜反射率分别为86%,81%,61%时,对应的自饱和系数分别约为0.68,0.66,0.52。即当双频激光腔输出镜反射率较小时,双纵模模式竞争较强;反之,模式竞争较弱。为获取较大频差双频激光输出,应采用反射率较高的输出镜。

Abstract

The mode competition coupling effect between two laser modes in double-longitudinal-mode dualfrequency microchip lasers is investigated, and the self-saturation coefficient and cross saturation coefficient of the two laser mode in dual-frequency laser intra-cavity with different refletivities of output mirror are ascertained by experiments. The dual-frequency microchip laser rate equation is established in the research, as the two variables of self-saturation coefficient β and cross saturation coefficient θ are undetermined. Thus the comparison of dualfrequency output power which is obtained by simulation is well illustrated by changing the parameters of microchip laser cavity. By comparing the power envelop profile with dual-frequency laser power spectrum, the two undetermined coefficients are confirmed. The experimental results show that with the refletivities of output mirror at 86%, 81% and 61% respectively, the corresponding self-saturation coefficients are 0.68, 0.66 and 0.52, which means the smaller the reflectivity of output mirror is, the stronger the two mode competition is. A high reflectivity of output mirror indicates the mode competition between the two modes is week, and a large frequency offset of dualfrequency laser can be obtained in such a case.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN248.1

DOI:10.3788/cjl201542.0702009

所属栏目:激光物理

责任编辑:宋梅梅  信息反馈

基金项目:浙江省自然科学基金(LQ13F010012,LY12F01009)、“区域光纤通信网与新型光通信系统国家重点实验室”开放基金(2015GZKF03008)

收稿日期:2015-02-03

修改稿日期:2015-03-19

网络出版日期:--

作者单位    点击查看

胡淼:杭州电子科技大学通信工程学院, 浙江 杭州 310018上海交通大学区域光纤通信网与新型光通信系统国家重点实验室, 上海 200240
孙骁:杭州电子科技大学通信工程学院, 浙江 杭州 310018
李齐良:杭州电子科技大学通信工程学院, 浙江 杭州 310018
周雪芳:杭州电子科技大学通信工程学院, 浙江 杭州 310018
应娜:杭州电子科技大学通信工程学院, 浙江 杭州 310018
魏一振:杭州电子科技大学通信工程学院, 浙江 杭州 310018
卢旸:杭州电子科技大学通信工程学院, 浙江 杭州 310018
杨国伟:杭州电子科技大学通信工程学院, 浙江 杭州 310018
郑尧元:杭州电子科技大学通信工程学院, 浙江 杭州 310018
韦勉:杭州电子科技大学通信工程学院, 浙江 杭州 310018

联系人作者:胡淼(miao_hu@foxmail.com)

备注:胡淼(1982—),男,博士,主要从事大功率LED 技术、激光技术等方面的研究。

【1】Koonen A M, Larrodé M G, Ng′oma A, et al.. Perspectives of radio-over-fiber technologies[C]. Optical Fiber Communication/National Fiber Optic Engineers Conference, San Diego: IET. 2008: 0ThP3.

【2】Hu Miao, Tang Yongpan, An Rude, et al.. Study on the single-longitudinal-mode dual-frequency microchip laser for photonic generation of millimeter-wave signal[J]. J Optoelectron Laser, 2011, 22(10): 1435-1438.
胡淼, 唐拥攀, 安汝德, 等. 可光生毫米波的单纵模双波长微片激光器研究[J]. 光电子·激光, 2011, 22(10): 1435-1438.

【3】Zhang Jing, Wang Muguang, Shao Chenguang, et al.. Photonic frequency-multiplying millimeter-wave generation based on dualparallel Mach-Zehnder modulator[J]. Acta Optics Sinica, 2014, 34(3): 0306004.
张敬, 王目光, 邵晨光, 等. 基于双平行马赫-曾德尔调制器的光子倍频毫米波生成的研究[J]. 光学学报, 2014, 34(3): 0306004.

【4】Xu Fanghua, Wang Zhengping, Zhang Huijin, et al.. Study on the properties of LD-pumped Nd∶LuVO4 microchip laser[J]. Acta Physica Sinica, 2007, 56(7): 3950-3954.
徐方华, 王正平, 张怀金, 等. LD 抽运Nd∶LuVO4微片激光器性能研究[J]. 物理学报, 2007, 56(7): 3950-3954.

【5】Rolland A, Frein L, Vallet M, et al.. 40-GHz photonic synthesizer using a dual-polarization microlaser[J]. IEEE Photonics Technology Letters, 2010, 22(23): 1738-1740.

【6】Hyodo M, Tani M, Matsuura S, et al.. Generation of millimeter-waves radiation using a dual-longitudinal-mode microchip laser[J]. Electronics Letters, 1996, 32(17): 1589-1591.

【7】Lai N D, Brunel M, Bretenaker F, et al.. Two-frequency Er-Yb glass microchip laser passively Q switched by a Co∶ASL saturable absorber[J]. Opt Lett, 2003, 28(5): 328-330.

【8】Brubel M, Amon A, Vallet M. Dual-polarization microchip laser at 1.53 mm[J]. Opt Lett, 2005, 30(18): 2418-2420.

【9】Rolland A, Brunel M, Loas G, et al.. Beat note stailzation of a 10-60 GHz Nd∶YAG microchip laser through optical down conversion[J]. Opt Express, 2011, 19(5): 4399-4404.

【10】Zhao Pu, Srinivasa R, Ding Yujie, et al.. Investigation of terahertz generation from passively Q-switched dual-frequency laser pulses[J]. Opt Lett, 2011, 36(24): 4818-4820.

【11】Rolland A, Ducournau G, Danion G, et al.. Narrow linewidth tunable terahertz radiation by photomixing without servo-locking[J]. IEEE Transactions on Terahertz Science and Technology, 2014, 4(2): 260-266.

【12】Danion G, Hamel C, Frein L, et al.. Dual frequency laser with two continuously and widely tunable frequencies for optical referencing of GHz to THz beatnotes[J]. Optic Express, 2014, 22(15): 17673-17678.

【13】Jiao Mingxing, Zhang Shulian, Liang Jinwen, et al.. Birefringent dual-frequency Nd∶YAG laser with large frequency-difference[J]. Chinese J Lasers, 2001, 28(2): 100-102.
焦明星, 张书练, 梁晋文. 大频差双折射双频Nd∶YAG 激光器[J]. 中国激光, 2001, 28(2): 100-102.

【14】Ren Cheng, Zhang Shulian. Diode-pumped dual-frequency microchip Nd∶YAG laser with tunable frequency difference[J]. Journal of Physics D: Applied Physics, 2009, 42(15): 155107.

【15】Yang Qing, Huo Yujing, Duan Yusheng, et al.. Double-longitudinal-mode continuous-wave laser with ultra-large frequency difference used for narrowband terahertz-wave generation[J]. Acta Optics Sinica, 2013, 33(5): 0514002.
杨清, 霍玉晶, 段玉生, 等. 用于产生窄带太赫兹波的超大频差双纵模连续激光器[J]. 光学学报, 2013, 33(5): 0514002.

【16】Pan Min, Zheng Shilie, Zhang Xianming, et al.. Application of stimulated Brillouin scattering in synthetic aperture passive millimeter wave imaging[J]. J Optoelectron·Laser, 2002, 24(5): 1006-1011.
潘敏, 郑史烈, 章献民, 等. 受激布里渊散射在被动毫米波综合孔径成像中的运用[J]. 光电子·激光, 2002, 24(5): 1006-1011.

【17】Jiao Mingxing, Xing Junhong, Liu Yun, et al.. Design and experimental study on two-cavity dual-frequency all-solid-state laser with large frequency difference[J]. Chinese J Lasers, 2010, 37(11): 2784-2789.
焦明星, 邢俊红, 刘芸, 等. 双腔大频差双频全固态激光器设计与实验研究[J]. 中国激光, 2010, 37(11): 2784-2789.

【18】Hu Miao, Zhang Fei, Zhang Xiang, et al.. Amplification of dual-frequency laser for photonic millimeter-wave signal generation[J]. Acta Optica Sinica, 2014, 34(11): 1114003.
胡淼, 张飞, 张翔, 等. 用于光生毫米波的双频激光放大特性[J]. 光学学报, 2014, 34(11): 1114003.

【19】Schmitt N. P, Peuser P, Heinemann S, et al.. A model describing the single and multiple line spectra of tunable microcrystal lasers[J]. Optical and Quantum Electronics, 1993, 25(8): 527-544.

引用该论文

Hu Miao,Sun Xiao,Li Qiliang,Zhou Xuefang,Ying Na,Wei Yizhen,Lu Yang,Yang Guowei,Zheng Yaoyuan,Wei Mian. Investigation of Mode Competition in Dual-Frequency Nd∶YVO4 Microchip Laser[J]. Chinese Journal of Lasers, 2015, 42(7): 0702009

胡淼,孙骁,李齐良,周雪芳,应娜,魏一振,卢旸,杨国伟,郑尧元,韦勉. Nd∶YVO4双频微片激光器的模式竞争研究[J]. 中国激光, 2015, 42(7): 0702009

被引情况

【1】傅杨颖,肖光宗,龚梦帆,张斌. 抑制Y 型腔正交偏振双频激光器频差闭锁及失谐磁场结构设计. 激光与光电子学进展, 2016, 53(3): 31407--1

【2】戴荣,胡淼,蔡美伶,李齐良,周雪芳,魏一振,卢旸. Nd:YVO4双频微片激光器的热致频差调谐实验研究. 中国激光, 2017, 44(1): 101003--1

【3】蔡美伶,胡 淼,戴 荣,陈 松,李齐良,周雪芳,魏一振,卢 旸,毕美华. Nd∶GdVO4和Nd∶YVO4晶体发射截面谱及微片激光器光谱的实验研究. 中国激光, 2017, 44(11): 1101004--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF