首页 > 论文 > 中国激光 > 42卷 > 7期(pp:703005--1)

超高应变率力学效应下多晶铜的微观塑性变形分子动力学模拟

Molecular Dynamics Simulation of Plastic Deformation of Polycrystalline Cu under Mechanical Effect with Ultrahigh Strain Rate

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

激光冲击强化利用离子体力学效应在金属表面形成较深的残余压应力层,细化表层晶粒,大幅度提高金属抗疲劳、抗磨损和抗腐蚀等机械性能。目前现有实验手段很难获取超高应变速率下塑性变形过程中微观结构演变的动态过程。本文采用LAMMPS 软件对在2×107 s-1应变率,15 ns的加载时间,300 K 温度下的多晶铜塑性变形行为进行分子动力学模拟,获得超高应变速率力学效应下多晶铜塑性变形微观结构的演变过程。超高应变率下力学效应作用下,形变孪晶是中层错能金属亚微米晶粒细化的主要变形方式。

Abstract

Laser shock processing utilizes mechanical effect with ultrahigh strain rate to generate deeper residual compressive stress and grain refinement layer, which improves mechanical properties, such as fatigue resistance, wear resistance and corrosion resistance. To date, it is very difficult to present dynamic microstructure evolution at ultra- short time (several ten nanoseconds) during the plastic deformation at ultrahigh strain rate using experimental method. At temperature of 300 K, a molecular dynamics of polycrystalline Cu with a loading duration of 15 ns at a strain rate of 2×107 s-1 is conducted to describe the microstructure evolution process with the LAMMPS soft. Under the mechanical effect of laser shock wave with a ultra-high strain rate, deformation twinning is the important microstructure of grain refinement of the alloys with medium stacking fault energy.

中国激光微信矩阵
补充资料

中图分类号:TN249

DOI:10.3788/cjl201542.0703005

所属栏目:激光制造

责任编辑:宋梅梅  信息反馈

基金项目:国家自然科学基金(51275220)、江苏省杰出青年基金项目(BK20140012)、江苏省“六大人才高峰”高层次人才项目(2014-ZBZZ-015)、江苏省高校自然科学研究重大项目(14KJA460002)、江苏省高校“青蓝工程”骨干教师计划等

收稿日期:2015-01-16

修改稿日期:2015-04-07

网络出版日期:--

作者单位    点击查看

王志龙:江苏大学机械工程学院, 江苏 镇江 212013
罗开玉:江苏大学机械工程学院, 江苏 镇江 212013
刘月:江苏大学机械工程学院, 江苏 镇江 212013
鲁金忠:江苏大学机械工程学院, 江苏 镇江 212013

联系人作者:王志龙(spyitachi525@sina.cn)

备注:王志龙(1989—),硕士研究生, 主要从事激光表面改性技术方面的研究。

【1】X C Li, Y K Zhang, Y L Lu, et al.. Research of corrosion resistance for AZ31Magnesium alloy by laser shock processing[J]. Chinese J Lasers, 2014, 37(4): 0403002.
李兴成, 张永康, 卢雅琳, 等. 激光冲击AZ31镁合金抗腐蚀性能研究[J]. 中国激光, 2014, 37(4): 0403002.

【2】Y Chai, J Ren, W F He, et al.. Effect of laser shock processing on the fatigue property of K4030 alloy blade[J]. Laser & Optoelectronics Progress, 2014, 51(1): 011405.
柴艳, 任军, 何卫锋, 等. 激光冲击强化对K4030 合金叶片疲劳性能的影响[J]. 激光与光电子学进展, 2014, 51(1): 011405.

【3】M Luo, K Y Luo, Q W Wang, et al.. Numerical simulation of laser shock peening on residual stress field of 7075-T6 aluminum alloy welding[J]. Acta Optica Sinica, 2014, 34(4): 0414003.
罗密, 罗开玉, 王庆伟, 等. 激光冲击7075-T6铝合金焊缝的残余应力场数值模拟[J]. 光学学报, 2014, 34(4): 0414003.

【4】J Z Lu, K Y Luo, A X Feng, et al.. Micro-structure enhancement mechanism of LY2 aluminum alloy by means of a single laser shock processing[J]. Chinese J Lasers, 2010, 37(10): 2662-2666.
鲁金忠, 罗开玉, 冯爱新, 等. 激光单次冲击LY2铝合金微观强化机制研究[J]. 中国激光, 2010, 37(10): 2662-2666.

【5】J Z Lu, K Y Luo, Y K Zhang, et al.. Grain refinement of LY2 aluminum alloy induced by ultra-high plastic strain during multiple laser shock processing impacts[J]. Acta Materialia, 2010, 58(11): 3984-3994.

【6】B J Alder, T E Wainwright. Studies in molecular dynamics.Ⅰ. general method[J]. The Journal of Chemical Physics, 1959, 31(2): 459-466.

【7】Zhang Junjie. Molecular Dynamics Study of Generation Mechanism of Surface Layer in Nanomechanical Machining of Crystalline Copper[D]. Harbin: Harbin Institute of Technology, 2011.
张俊杰. 基于分子动力学的晶体铜纳米机械加工表层形成机理研究[D]. 哈尔滨: 哈尔滨工业大学, 2011.

【8】Wang Guimin. Molecular Dynamics Simulation of the Mechanical Behavior of Nanotwinned Copper[D]. Hangzhou: Zhejiang University, 2011.
王贵民. 纳米孪晶铜力学性能的分子动力学模拟[D]. 杭州: 浙江大学, 2011.

【9】T Kadoyoshi, H Kaburaki, F Shimizu, et al.. Molecular dynamics study on the formation of stacking fault tetrahedra and unfaulting of Frank loops in fcc metals[J]. Acta Materialia, 2007, 55(9): 3073-3080.

【10】J Schiotz, T Vegge, F D DiTolla, et al.. Atomic- scale simulations of the mechanical deformation of nanocrystalline metals[J]. Physical Review B, 1999, 60(17): 11971-11983.

【11】S Plimpton. Fast parallel algorithms for short-range molecular dynamics[J]. Journal of Computational Physics, 1995, 117: 1-19.

【12】J Cai, Y Y Ye. Simple analytical embedded-atom-potential model including a long-range force for fcc metals and their alloys.[J]. Physical Review B Condensed Matter, 1996, 54(12): 8398-8410.

【13】W Ma, W J Zhu, Y L Zhang, et al.. Construction of metallic nanocrystalline samples by molecular dynamics simulation[J]. Acta Physica Sinica, 2010, 59(7): 4781-4787.
马文, 祝文军, 张亚林, 等. 纳米多晶金属样本构建的分子动力学模拟研究[J]. 物理学报, 2010, 59(7): 4781-4787.

【14】A P Gerlich, L Yue, P F Mendez, et al.. Plastic deformation of polycrystalline aluminum at high temperatures and strain rate[J]. Acta Materialia, 2010, 58(6): 2176-2185.

【15】G J Ackland, A P Jones. Applications of local crystal structure measures in experiment and simulation[J]. Physical Review B, 2006, 73(5): 054104.

【16】W Humphrey, A Dalke, K Schulten. VMD: visual molecular dynamics[J]. Journal of Molecular Graphics, 1996, 14(1): 33-38.

【17】H F Lou, M P Wang, N Tang, et al.. Microstructures of twin- roll cast AZ31B Mg alloy and its deformation mechanism[J]. The Chinese Journal of Nonferrous Metals, 2008, 18(9): 1584-1589.
娄花芬, 汪明朴, 唐宁, 等. AZ31B镁合金的铸轧组织及其相关变形机制[J]. 中国有色金属学报, 2008, 18(9): 1584-1589.

【18】J P Hirth, J Lothe. Theory of Dislocations[M]. New York: Wiley & Sons, 1982.

【19】M D Sangid, T Ezaz, H Sehitoglu, et al.. Energy of slip transmission and nucleation at grain boundaries[J]. Acta Materialia, 2011, 59(1): 283-296.

引用该论文

Wang Zhilong,Luo Kaiyu,Liu Yue,Lu Jinzhong. Molecular Dynamics Simulation of Plastic Deformation of Polycrystalline Cu under Mechanical Effect with Ultrahigh Strain Rate[J]. Chinese Journal of Lasers, 2015, 42(7): 0703005

王志龙,罗开玉,刘月,鲁金忠. 超高应变率力学效应下多晶铜的微观塑性变形分子动力学模拟[J]. 中国激光, 2015, 42(7): 0703005

被引情况

【1】吕慧丽,毛煜东,于明志,杨开敏,刘芳,王远成. 超快激光加热技术传热理论研究进展. 激光与光电子学进展, 2020, 57(1): 10005--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF