首页 > 论文 > 中国激光 > 42卷 > 8期(pp:806005--1)

紫外-远红外超宽谱带高抗反射表面微纳米结构的超快激光制备及功能研究

Study on Ultrafast Laser Fabrication of UV-FIR Ultra-broad-band Antireflection Surface Micro-Nano Structures and Their Properties

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

材料表面抗反射特性在太阳能利用、传感、隐身、航天、军事等领域均具有重要应用价值。基于超快皮秒激光与材料的相互作用,在Cu、Al、Ti、H13钢4种金属材料表面制备出独特的微纳米复合结构,实现从紫外-远红外超宽谱带的高抗反射特性。在Al、Ti、H13钢表面制备出的微纳复合结构使该三种金属在紫外-可见-近红外波段的全反射率分别下降到10%、5%、5%。在Cu表面制备出的覆盖发达纳米颗粒的无序多孔嵌套结构在紫外-可见、紫外-近红外、紫外-中红外、以及紫外-远红外的波谱范围内的平均反射率分别下降到3%、6%、9%和10%左右,具有优异的超宽谱带抗反射特性。探讨了超宽谱带抗反射特性的形成机理及与表面微纳米结构之间的关系。

Abstract

Antireflection properties on material surfaces are of great value in many fields including solar utilization, sensing, stealth, aerospace technology, military, etc. Through the interaction of picosecond laser with metallic materials, unique micro/nano hierarchical structures are produced on Cu, Al, Ti, and H13 steel surfaces, realizing significant antireflection properties through the ultra-broad spectrum band from ultraviolet (UV) to infrared (FIR) region. Wherein the total reflectance of the micro/nano structured Al, Ti, and H13 steel surfaces in the UV-VIS-NIR region are reduced down to around 10%, 5%, and 5%, respectively. The average reflectance of the disordered porous structures covered by abundant nanoparticles on Cu surface in the UV-VIS, UV-NIR, UV-MIR, and UV-FIR regions are reduced down to around 3% , 6% , 9% , and 10% , respectively, exhibiting extraordinary ultra- broad- band antireflection property. The formation mechanisms of the ultra-broad-band antireflection property as well as its relationship with surface micro/nano structures are discussed.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN249

DOI:10.3788/cjl201542.0806005

所属栏目:材料与薄膜

基金项目:国家自然科学基金(51210009)

收稿日期:2015-01-27

修改稿日期:2015-03-31

网络出版日期:--

作者单位    点击查看

范培迅:清华大学材料学院激光材料加工研究中心, 先进成形制造教育部重点实验室, 北京 100084清华大学精密仪器系, 北京 100084
龙江游:清华大学材料学院激光材料加工研究中心, 先进成形制造教育部重点实验室, 北京 100084
江大发:清华大学材料学院激光材料加工研究中心, 先进成形制造教育部重点实验室, 北京 100084
张红军:清华大学材料学院激光材料加工研究中心, 先进成形制造教育部重点实验室, 北京 100084
钟敏霖:清华大学材料学院激光材料加工研究中心, 先进成形制造教育部重点实验室, 北京 100084

联系人作者:范培迅(fpx@tsinghua.edu.cn)

备注:范培迅(1987—),男,博士,主要从事激光成形加工及激光微纳制造等方面的研究。

【1】Raut H K, Ganesh V A, Nair A S, et al.. Anti-reflective coatings: A critical, in-depth review[J]. Energy Environ Sci, 2011, 4(10): 3779-3804.

【2】Mizuno K, Ishii J, Kishida H, et al.. A black body absorber from vertically aligned single-walled carbon nanotubes[J]. Proceedings of the National Academy of Sciences, 2009, 106(15): 6044-6047.

【3】Wu C, Crouch C H, Zhao L, et al.. Near-unity below-band-gap absorption by microstructured silicon[J]. Appl Phys Lett, 2001, 78(13): 1850-1852.

【4】Huang Y F, Chattopadhyay S, Jen Y J, et al.. Improved broadband and quasi- omnidirectional anti- reflection properties with biomimetic silicon nanostructures[J]. Nat Nanotechnol, 2007, 2(12): 770-774.

【5】Escarré J, SOderstrOm K, Despeisse M, et al.. Geometric light trapping for high efficiency thin film silicon solar cells[J]. Sol Energy Mater Sol Cells, 2012, 98: 185-190.

【6】Rephaeli E, Fan S. Tungsten black absorber for solar light with wide angular operation range[J]. Appl Phys Lett, 2008, 92(21): 211107.

【7】Xiong X, Jiang S C, Hu Y H, et al.. Structured metal film as a perfect absorber[J]. Adv Mater, 2013, 25(29): 3994-4000.

【8】Aydin K, Ferry V E, Briggs R M, et al.. Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers[J]. Nat Commun, 2011, 2: 517.

【9】Paivasaari K, Kaakkunen J J J, Kuittinen M, et al.. Enhanced optical absorptance of metals using interferometric femtosecond ablation[J]. Opt Express, 2007, 15(21): 13838-13843.

【10】Kaakkunen J J J, Paivasaari K, Kuittinen M, et al.. Morphology studies of the metal surfaces with enhanced absorption fabricated using interferometric femtosecond ablation[J]. Appl Phys A, 2009, 94(12): 215-220.

【11】Tang G, Hourd A C, Abdolvand A. Nanosecond pulsed laser blackening of copper[J]. Appl Phys Lett, 2012, 101(23): 231902.

【12】Vorobyev A Y, Guo C. Femtosecond laser blackening of platinum[J]. J Appl Phys, 2008, 104(5): 053516.

【13】Vorobyev A Y, Topkov A N, Gurin O V, et al.. Enhanced absorption of metals over ultrabroad electromagnetic spectrum[J]. Appl Phys Lett, 2009, 95(12): 121106.

【14】Vorobyev A Y, Guo C. Colorizing metals with femtosecond laser pulses[J]. Appl Phys Lett, 2008, 92(4): 041914.

【15】Yang Y, Yang J, Liang C, et al.. Ultra-broadband enhanced absorption of metal surfaces structured by femtosecond laser pulses[J]. Opt Express, 2008, 16(15): 11259-11265.

【16】Huang Yongguang. Fundamental Researches of Femtosecond Laser Inducing Micro/Nano Structures on the Metal Surface[D]. Beijing: Beijing University of Technology, 2010: 71.
黄永光. 飞秒激光诱导金属表面微纳米结构的基础研究[D]. 北京: 北京工业大学, 2010: 71.

【17】You Jinda. Enhanced Absorption of Metals Over Ultrabroad Electromagnetic Spectrum by Femtosecond Laser Processed Micro-Nano Structures[D]. Changchun: Changchun University of Science and Technology, 2014: 12.
游锦达. 飞秒激光制备金属表面电磁波增强吸收微纳米结构研究[D]. 长春: 长春理工大学, 2014: 12.

【18】Ancona A, DOring S, Jauregui C, et al.. Femtosecond and picosecond laser drilling of metals at high repetition rates and average powers[J]. Opt Lett, 2009, 34(21): 3304-3306.

【19】Ancona A, ROser F, Rademaker K, et al.. High speed laser drilling of metals using a high repetition rate, high average power ultrafast fiber CPA system[J]. Opt Express, 2008, 16(12): 8958-8968.

【20】Erdogan M, Oktem B, Kalaycoglu H, et al.. Texturing of titanium (Ti6Al4V) medical implant surfaces with MHz-repetition-rate femtosecond and picosecond Yb-doped fiber lasers[J]. Opt Express, 2011, 19(11): 10986-10996.

【21】Deinega A, Valuev I, Potapkin B, et al.. Minimizing light reflection from dielectric textured surfaces[J]. J Opt Soc Am A, 2011, 28(5): 770-777.

【22】Deinega A, Valuev I, Potapkin B, et al.. Antireflective properties of pyramidally textured surfaces[J]. Opt Lett, 2010, 35(2): 106-108.

【23】Teperik T V, García D A F J, Borisov A G. Omnidirectional absorption in nanostructured metal surfaces[J]. Nat Photonics, 2008, 2(5): 299-301.

【24】Polyakov A, Cabrini S, Dhuey S, et al.. Plasmonic light trapping in nanostructured metal surfaces[J]. Appl Phys Lett, 2011, 98(20): 203104.

引用该论文

Fan Peixun,Long Jiangyou,Jiang Dafa,Zhang Hongjun,Zhong Minlin. Study on Ultrafast Laser Fabrication of UV-FIR Ultra-broad-band Antireflection Surface Micro-Nano Structures and Their Properties[J]. Chinese Journal of Lasers, 2015, 42(8): 0806005

范培迅,龙江游,江大发,张红军,钟敏霖. 紫外-远红外超宽谱带高抗反射表面微纳米结构的超快激光制备及功能研究[J]. 中国激光, 2015, 42(8): 0806005

被引情况

【1】董亭亭,付跃刚,陈驰,张磊,马辰昊. 锗衬底表面圆柱形仿生蛾眼抗反射微结构的研制. 光学学报, 2016, 36(5): 522004--1

【2】刘顺瑞,王丽,孙艳军,王君,王越,吴天祺,冷雁冰,董连和. 利用截头圆锥形仿生蛾眼结构提高LED光提取效率. 光学学报, 2018, 38(1): 122001--1

【3】谢志伟,董世运,闫世兴,李恩重,汪宏斌,李重河. 皮秒激光微纳加工304不锈钢形貌调控. 激光与光电子学进展, 2018, 55(3): 31402--1

【4】林鹤,付跃刚,欧阳名钊,赵宇,朱启凡,吴锦双. 宽光谱广角蛾眼抗反射超表面结构设计分析. 中国激光, 2019, 46(1): 113002--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF