首页 > 论文 > 光学学报 > 35卷 > s1期(pp:s116004--1)

褶皱金属结构平板波导传输特性研究

The Transmission Characteristics of Corrugated Metal Parallel-Plate Waveguide

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

证明了两块表面具有亚波长凹槽结构的金属板平行放置构成的褶皱金属结构平板波导与等离子体辅助平板波导存在相同点和不同点;并且设计了凹槽深度渐变的对称褶皱金属结构平板波导来实现传输模和表面模的相互转换。研究表明,由于在波导中间区域场分布和能量主要集中在褶皱表面,放入其中的理想导体圆柱不影响其场分布和传输特性,即深度渐变的对称褶皱金属结构平板波导具有隐形效应;褶皱金属结构平板波导阻带上边带截止频率随放入褶皱内样品的介电常数呈线性变化,能够用于介质传感;以柴油、液态石蜡和橄榄油等样品的检测为例,证实了其太赫兹传感特性。该工作对研究褶皱金属结构平板波导的应用,探索其在太赫波的传输、调控以及太赫器件研制等方面具有指导意义。

Abstract

The corrugated metal parallel plate waveguide composed by two parallel plates with subwavelength corrugations on both surfaces shows some similarities and differences with plasmon-assisted parallel plate waveguide are confirmed. A symmetrical corrugated metal parallel plate waveguide with gradually changed depth of corrugations is designed to convert electromagnetic wave between transmission mode and surface mode. Due to the field distribution and the power flow are concentrated on the corrugated surface at the intermediate region of the waveguide, a cylindrical perfect electric conductor put into the center of the waveguide does not affect its field distribution and transmission characteristics, namely the waveguide has stealth effect. The cutoff frequency of the upper sideband of corrugated metal parallel plate waveguide’s band gap changes linearly with the permittivity of sample substance which is filled in the corrugations, and therefore it can be used in dielectric sensing. The terahertz sensing characteristics are confirmed by the detection of samples such as diesel, liquid paraffin and olive oil. This work is helpful for exploring the application of the corrugated metal parallel plate waveguide in terahertz wave transmission, manipulation and terahertz device design.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:O441

DOI:10.3788/aos201535.s116004

所属栏目:材料

基金项目:国家自然科学基(61161007, 61261002, 61461052)、教育部博士点基金(20135301110003, 20125301120009)、中国博士后基金(2013M531989, 2014T70890)、云南省自然科学基金重点项目(2013FA006)

收稿日期:2015-01-06

修改稿日期:2015-03-10

网络出版日期:--

作者单位    点击查看

杨剑锋:云南大学无线创新实验室 信息学院,云南 昆明 650091
杨晶晶:云南大学无线创新实验室 信息学院,云南 昆明 650091
闫肃:北京理工大学信息与电子学院,北京 100081
邓伟:云南大学无线创新实验室 信息学院,云南 昆明 650091
黄铭:云南大学无线创新实验室 信息学院,云南 昆明 650091云南省高校谱传感与边疆无线电安全重点实验室,云南 昆明 650091

联系人作者:杨剑锋(408671175@qq.com)

备注:杨剑锋(1988—),男,硕士研究生,主要从事微波及超材料方面的研究。

【1】Z Jacob,V M.Shalaev.Plasmonisc goes quantum[J].Science, 2011,334(6055):463-464.

【2】A V.Zayats,I I.Smolyaninov,A A.Maradudin.Nano-optics of surface plasmon polaritons[J].Physics Reports,2005,408(3): 131-314.

【3】W L. Barnes, A Dereux, T W. Ebbesen. Surface plasmon subwavelength optics[J]. Nature,2003,424(6950): 824-830.

【4】J Wang, C Hu, J Zhang. Multifunctional and multi-output plasmonic meta-elements for integrated optical circuits[J]. Opt Express,2014,22(19): 22753-22762.

【5】J Yang, M Huang, T Li, et al.. Manipulating the field distribution of a polygonal SPP resonator based on AZIM[J]. Journal of Physics D: Applied Physics,2014,47(8): 085106.

【6】K M. Mayer, J H. Hafner. Localized surface plasmon resonance sensors [J]. American Chemical Society,2011,111(12):3828-3857.

【7】W Zhao, J Xu, H Chen. Photoelectrochemical DNA biosensors[J]. Chemical Review,2014,114(15): 7421-7441.

【8】E C. Dreaden, A M. Alkilany, Huang X, et al. The golden age: gold nanoparticles for biomedicine[J]. Royal Society of Chemistry,2012,41(7): 2740-2779.

【9】X Cheng, B Y H Hau, N Li, et al.. Fabrication of a DNA sensor based on simultaneous electrochemical impedance spectroscopy and localized surface plasmon resonance[C]. The Electrochemical Society,2013(16): 717.

【10】Wang Gejia, Zhang Chonglei, Wang Rong,et al.. Extracting phase information of surface plasmon resonance imaging system [J]. Acta Optica Sinica, 2013: 33(5): 0524001 .
王戈嘉,张崇磊,王蓉,等. 表面等离子体共振成像系统相位提取[J]. 光学学报,2013,33(5): 0524001.

【11】Feng Lihang, Zeng Jie, Liang Dakai, et al.. Development of fiber-optic surface plasmon resonance sensor based on tapered structure probe[J]. Acta Physica. Sinica.,2013,62(12): 124207.
冯李航,曾捷,梁大开,等. 契形结构光纤表面等离子体共振传感器研究物理学报[J]. 物理学报,2013,62(12): 124207.

【12】W Kiefer. Surface Enhanced Raman Spectroscopy: Analytical,Biophysical and Life Science Applications[M].Weinheim: Wiley-Vch Press,2013: 17-25.

【13】Liu Yu, Xu Shuping, Tang Bing, et al.. Study on the relationship of surface plasmon and resonance surface-enhanced raman scattering[J]. Acta Optica Sinica, 2010, 30(1): 29-33.
刘钰, 徐抒平, 唐彬,等. 表面等离子体共振与表面增强拉曼散射相关性研究[J]. 光学学报, 2010, 30(1): 29-33.

【14】K Thyagarajan, J Butet, O J F Martin. Augmenting second harmonic generation using fano resonances in plasmonic systems[J].Nano Lett,2013,13(4): 1847-1851.

【15】J B Pendry, L Martín-Moreno, F J Garcia-Vidal. Mimicking surface plasmons with structured surfaces[J]. Science,2004,305(5685): 847-848.

【16】F J Garcia-Vidal, L Martín-Moreno, J B Pendry.Surfaces with holes in them: New plasmonic metamaterials[J]. J. Opt. A: Pure Appl Opt, 2005,7(2):97-101.

【17】J Wu, D Hou, K Liu, et al.. Differential microstrip lines with reduced crosstalk and common mode effect based on spoof surface plasmon polaritons[J]. Opt Express,2014,22(22): 26777-26787.

【18】J Wu, D Hou, K Liu, et al.. Differential transmission lines with surface plasmon polaritons at low frequencies[J].Electronics Letters,2014,50(5): 379-381.

【19】J Liu, R Mendis, D M Mittleman. Designer reflectors using spoof surface plasmons in the terahertz range[J]. Physical Review B,2012,86(24): 241405.

【20】N Yu, Q Wang, M A Kats, et al.. Designer spoof surface plasmon structures collimate terahertz laser beams[J]. Nature Materials,2010,9(9): 730-735.

【21】R K Li, H To, G Andonian,et al.. Surface-plasmon resonance-enhanced multiphoton emission of high-brightness electron beams from a nanostructured copper cathode[J]. Phys Rev Lett,2013,110(7): 074801.

【22】Chen Yongyi, Tong Cunzhu, Qin Li, et al.. Progress in surface plasmon polariton nano-laser technologies and applications[J]. Chinese Optics, 2012, 5(5): 453-463.
陈泳屹,佟存柱,秦莉,等. 表面等离子体激元纳米激光器技术及应用研究进展[J]. 中国光学, 2012, 5(5): 453-463.

【23】M A Kats, D Woolf, R Blanchard, et al. Spoof plasmon analogue of metal-insulator-metal waveguides[J].Opt Express, 2011,19(16): 14860-14870.

【24】Z Liao, J Zhao, B Pan, et al.. Broadband transition between microstrip line and conformal surface plasmon waveguide[J]. Journal of Physics D: Applied Physics,2014,47(31): 315103.

【25】Z Fu, Q Gan, Y J Ding, et al.. From waveguiding to spatial localization of THz waves within a plasmonic metallic grating[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2008,14(2): 486-490.

【26】X Bai, S Qu, H Yi. Applications of spoof planar plasmonic waveguide to frequency-scanning circularly polarized patch array[J]. Journal of Physics D: Applied Physics,2014,47(32): 325101.

【27】J J Yang, M Huang, X Z Dai, et al.. A spoof surface WGM sensor based on a textured PEC cylinder[J]. Europhysics Letters,2013,103(4): 44001.

【28】Y Xu, Q Wu, H Chen. Manipulating transverse magnetic modes in waveguide using thin plasmonic materials[J]. Laser Photonics Rev.,2014,8(4): 562-568.

【29】J B Pendry, D Schurig, D R Smith. Controlling electromagnetic fields[J]. Science,2006,312(5781): 1780-1782

引用该论文

Yang Jianfeng,Yang Jingjing,Yan Su,Deng Wei,Huang Ming. The Transmission Characteristics of Corrugated Metal Parallel-Plate Waveguide[J]. Acta Optica Sinica, 2015, 35(s1): s116004

杨剑锋,杨晶晶,闫肃,邓伟,黄铭. 褶皱金属结构平板波导传输特性研究[J]. 光学学报, 2015, 35(s1): s116004

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF