首页 > 论文 > 光学学报 > 35卷 > 8期(pp:0806003--1)

基于光频域反射技术的超弱反射光纤光栅传感技术研究

Research on the Ultra-Weak Reflective Fiber Bragg Grating Sensing Technology Based on Optical Frequency Domain Reflection Technology

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

光纤光栅传感技术近年来的快速发展对复用容量和空间分辨率提出了更高的要求。采用超弱反射光纤光栅(FBG)结合光频域反射技术(OFDR),实现了大容量、高空间分辨率的准分布式光纤光栅传感网络的解调。通过对拍频信号分离的优化和非线性矫正,利用拍频信号的频谱信息,实现了高空间分辨率的光纤光栅位置信息的提取,并进行各个光栅拍频信号时域上的分离,再结合希尔伯特变换还原光栅的反射光谱信息,实现光栅的波长解调。实现了单根光纤上200 个间隔为20 mm、中心波长为1552.8 nm、反射率仅为0.1%的全同超弱反射光纤光栅的解调。实验结果表明,在-10 ℃~80 ℃的温度范围内,各个光栅的中心波长随温度变化的线性度达到99.6%以上。

Abstract

The rapid development of fiber grating sensing technology in recent years puts forward higher request on the multiplexing capacity and spatial resolution. The demodulation of quasi-distributed fiber Bragg grating (FBG)sensing with high capacity and high spatial resolution is achieved by adopting ultra-weak FBGs and optical frequency domain reflection technology (OFDR). In order to achieve the grating demodulation, the optimization of beat frequency signal separation and nonlinear correction to realize the extraction of fiber grating position information with high spatial resolution as well as the separation of the grating beat signal in the time domain are used respectively. Then the grating reflection spectral information by using the Hill Hilbert transform is restored. The system multiplex 200 FBGs along a single optical fiber have the same center wavelength of 1552.8 nm, reflectivity of 0.1% , space interval of 20 mm. The experimental results shows that, in the temperature range of -10 ℃~80 ℃, the measured center wavelength of FBG has good linearity of 99.6%.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:O433.1

DOI:10.3788/aos201535.0806003

所属栏目:光纤光学与光通信

基金项目:国家自然科学基金(61205072、61290311)

收稿日期:2015-01-29

修改稿日期:2015-04-13

网络出版日期:--

作者单位    点击查看

李政颖:武汉理工大学光纤传感技术国家工程实验室, 湖北 武汉 430070武汉理工大学光纤传感技术与信息处理教育部重点实验室, 湖北 武汉 430070
孙文丰:武汉理工大学光纤传感技术国家工程实验室, 湖北 武汉 430070武汉理工大学光纤传感技术与信息处理教育部重点实验室, 湖北 武汉 430070
王洪海:武汉理工大学光纤传感技术国家工程实验室, 湖北 武汉 430070

联系人作者:李政颖(zhyli@whut.edu.cn)

备注:李政颖(1981-),男,博士,副教授,主要从事光纤传感方面的研究。

【1】Cai Jiangjiang, Xu Guoliang, Hu Junhui, et al.. Remote giber Bragg grating sensors system based on self-heterodyne detection[J]. Chinese J Lasers, 2012, 39(12): 1214002.
蔡江江,许国良,胡君辉, 等. 基于自外差探测的多光纤光栅远程传感系统[J]. 中国激光, 2012, 39(12): 1214002.

【2】Jia Ziguang, Reng liang, Li Hongnan, et al.. Application of fiber Bragg grating sensors in monitoring curing process of carbon fiber composite[J]. Chinese J Lasers, 2010, 37(5): 1298-1303.
贾子光, 任亮, 李宏男, 等. 应用光纤光栅传感器监测复合材料固化过程[J]. 中国激光, 2010, 37(5): 1298-1303.

【3】Zhang Xiaoli, Liang Dakai, Lu Jiyun, et al.. A high reliable optic fiber Bragg grating sensor network design[J]. Chinese J Lasers, 2011, 38(1): 0105004.
张晓丽, 梁大开, 芦吉云, 等. 高可靠光纤布拉格光栅传感器网络设计[J]. 中国激光, 2011, 38(1): 0105004.

【4】Li Zhenying, Zhou Zude, Tong Xinglin, et al.. Research of high-speed large capacity fiber Bragg grating demodulator[J]. Acta Optica Sinica,2012, 32(3): 0306007.
李政颖, 周祖德, 童杏林, 等. 高速大容量光纤光栅解调仪的研究[J]. 光学学报, 2012, 32(3): 0306007.

【5】Liu Deming, Sun Qizhen. Distributed optical fiber sensing technology and its applications[J]. Laser & Optoelectronics Progress, 2009, 46(11): 29-33.
刘德明, 孙琪真. 分布式光纤传感技术及其应用[J]. 激光与光电子学进展, 2009, 46(11): 29-33.

【6】Xie Weilin, Dong Yi, Zhou Qian, et al.. Phase noise analysis of optical frequency domain reflectometry[J]. Acta Optica Sinica, 2011, 31(7): 0706003.
谢玮霖,董毅,周潜, 等. 光频域反射技术中激光相位噪声影响分析[J]. 光学学报, 2011, 31(7): 0706003.

【7】Zhang Caixiang, Zhang Zhenwei, Zheng Wanfu, et al.. Study of a quasi-distributed optical fiber sensing system based on ultra-weak fiber bragg grating[J]. Chinese J Lasers, 2012, 41(4): 0405004.
张彩霞,张震伟,郑万福,等. 超弱反射光栅准分布式光纤传感系统研究[J]. 中国激光,2012, 41(4): 0405004.

【8】Zhang Manliang, Sun Qizhen, Wang Zi, et al.. Investigation on distributed optical fiber sensor based on identical-low-reflective fiber gratings[J]. Laser & Optoelectronics Progress, 2011, 48(8): 080604.
张满亮, 孙琪真, 王梓, 等. 基于全同弱反射光栅光纤的分布式传感研究[J]. 激光与光电子学进展, 2011, 48(8): 080604.

【9】Y Kivilcim, M Veronique, M Patrice, et al.. Complete analysis of multi-reflection and spectral-shadowing crosstalks in a quasidistributed fiber sensor interrogated by OFDR[J]. IEEE Sensors Journal, 2012, 12(5): 988-995.

【10】Richards L, Parker A R, Ko W L, et al.. Real-time In-Flight Strain and Deflection Monitoring with Fiber Optic Sensors[OL]. http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20080041514_2008039073.pdf [2015-5-22].

【11】Y Kivilcim, M Patrice, W Marc, et al.. A quasi-distributed temperature sensor interrogated by optical frequency-domain reflectometer[J]. Measurement Science and Technology, 2011, 22(11): 115204.

【12】H Murayama, K Tachibana, H Igawa, et al.. Strain monitoring of 6-m composite wing structure by fiber-optic distributed sensing system with FBGs[C]. European Conference on Composite Materials Venice, 2012: 84212D.

【13】Li Zhaoyun, Li Su, Liu Zhiqiang, et al.. Research in optical frequency domain reflectometry fiber bragg grating distributed strain sensor[J]. Optical Communication Technology, 2012, 36(12): 33-35.
李沼云, 李苏, 刘志强, 等. 光频域反射光纤光栅分布式应变传感研究[J]. 光通信技术, 2012,36(12): 33-35.

【14】Ding Zhenyang, Liu Tiegen, Liu Kun, et al.. Monitoring optical fiber sensor networks by optical frequency-domain reflectometry[C]. Photonics Global Conference, 2012: 6458067.

【15】Zhu Fangdong, Zhang Dongsheng, Fan Peng, et al.. FBG sensing network with bus topological structure based on optical frequency domain reflectometry[J]. Optoelectronics·Laser, 2014, 24(3): 030526-030532.
朱方东, 张东生, 樊鹏, 等. 基于光频域反射的总线型拓扑结构FBG 传感网络[J].光电子·激光,2014,24(3): 030526-030532.

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF