首页 > 论文 > 光学 精密工程 > 23卷 > 6期(pp:1742-1748)

多传感器集成氢气检测系统的知识推送故障诊断

Fault diagnosis based on knowledge pushing in multi-sensor integration hydrogen detection system

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对现有多传感器集成氢气检测系统不能对自身工作状态进行诊断的缺点, 对基于知识的故障诊断专家系统进行了分析, 提出了一种基于知识管理和知识主动推送的故障诊断方法。对提出的用于多传感器集成氢气检测系统故障诊断的主要层次结构进行了研究。根据专家系统的基本原理介绍了基于知识推送的专家系统的总体结构。分析了系统故障模式, 讨论了故障诊断单元知识库的设计方法。建立了知识主动推送的推理机构模型, 给出了其推理方法和步骤。最后, 给出了基于知识推送的多传感器集成氢气检测系统故障诊断单元的设计方法。实验结果表明: 本方法的故障诊断准确率可达到97%以上, 验证了该方法的有效性。提出的方法能够主动将知识在适当的时候传递给决策者, 提高了故障诊断的速度和准确度。

Abstract

As multi-sensor integration hydrogen detection systems can not diagnose the working state by itself, an expert system of fault diagnosis based on knowledge was analyzed and a fault diagnosis method based on knowledge management and knowledge pushing was proposed. The hierarchical structure of the fault diagnosis method used in the multi-sensor integration hydrogen detection system was investigated. On the basis of the principle of expert systems, the texture of expert system based on knowledge pushing actively was presented. After the fault modes were analyzed, a knowledge base fault diagnosis design was discussed. Then the method and step of inference engine based on knowledge pushing actively were researched by its established model. Finally, the fault diagnosis unit for multi-sensor integration hydrogen detection system based on knowledge pushing was designed. Experimental results indicate that the fault diagnosis accuracy rate of the proposed method reaches above 97%, which verifies the effectiveness of the method. It can transfer initiatively the knowledge to the decision-maker at opportune moment, and improve the speed and accuracy rate of fault diagnosis.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TP277;O659

DOI:10.3788/ope.20152306.1742

基金项目:国家自然科学基金资助项目(No.61473095); 青年科学基金资助项目(No. 61201306)

收稿日期:2014-12-30

修改稿日期:2015-01-22

网络出版日期:--

作者单位    点击查看

王冰:哈尔滨工程大学 信息与通信工程学院, 黑龙江 哈尔滨 150001中国电子科技集团公司第49研究所, 黑龙江 哈尔滨 150001
张洪泉:哈尔滨工程大学 自动化学院, 黑龙江 哈尔滨 150001
宋凯:哈尔滨工业大学 电气工程及自动化学院, 黑龙江 哈尔滨 150001
张震宇:中国船舶重工集团公司第703研究所, 黑龙江 哈尔滨 150001

联系人作者:王冰(wangbing@hrbeu.edu.cn)

备注:王冰(1984-), 女, 黑龙江哈尔滨人, 博士研究生, 工程师, 2005年于哈尔滨工程大学获得硕士学位, 主要从事传感器故障检测、诊断及恢复等方面的研究。

【1】黄斌, 陈世静, 张文伟, 等. 气浮式测力传感器静特性的影响因素[J]. 光学 精密工程, 2014, 22(2): 390-396.
HUANG B, CHEN SH J, ZHANG W W, et al.. Influence factors on static characteristics of flotation force transducers [J]. Opt. Precision Eng., 2014, 22(2): 390-396. (in Chinese)

【2】郑高峰, 何广奇, 刘海燕, 等. 电纺氧化锌纳米纤维乙醇、丙酮气敏传感器[J]. 光学 精密工程, 2014, 22(6): 1555-1561.
ZHENG G F, HE G Q, LIU H Y, et al.. Electrospun zinc oxide nanofibrous gas sensors for alcohol and acetone [J]. Opt. Precision Eng., 2014, 22(6): 1555-1561. (in Chinese)

【3】LO K L, NG H S, GRANT D M, et al..Extended Petri net models for fault diagnosis for substation automation [J].IEEE Proceedings : Generation , Transmission and Distribution, 1999, 146(3): 229-234.

【4】刘晶红, 孙辉, 沈宏海, 等. 机载光电成像设备的可测试性系统设计[J]. 光学 精密工程, 2008, 16(12): 2435-2440.
LIU J H, SUN H, SHEN H H, et al.. Design of testable system for airborne optoelectronic imaging equipment [J]. Opt. Precision Eng., 2008, 16(12): 2435-2440. (in Chinese)

【5】RICADELA A. Microsofts knowledge push [J] . InformationWeek. 2000, (805) : 151.

【6】SIONTOROU, CHRISTINA G. A knowledge-based approach to online fault diagnosis of FET biosensors [J]. IEEE Transactions on Instrumentation and Measurement, 2010, 59(9): 2345-2364.

【7】李恺钦. 基于改进遗传算法的航空发动机故障诊断专家系统[D]. 南昌: 南昌航空大学, 2012.
LI K Q. Based on an improved genetic algorithm for aero engine fault diagnosis expert system [D]. Nanchang: School of Aeronautical Manufacturing Engineering Nanchang Hangkong University, 2012. (in Chinese)

【8】高美铃. 基于PCA-RS智能技术的齿轮故障诊断研究与应用[D]. 武汉: 武汉理工大学, 2012.
GAO M L.Research and application of gear fault diagnosis based on PCA-RS intellectual technology [D]. Wuhan: Wuhan university of technology, 2012. (in Chinese)

【9】杨思锋, 王祁, 刘鲁. 一种基于知识推送的故障诊断系统[J]. 航空动力学报, 2010, 25(1): 203-207.
YANG S F, WANG Q, LIU L. Fault diagnosis system based on knowledge pushing [J]. Journal of Aerospace Power, 2010, 25(1): 203-207. (in Chinese)

【10】LEE H J, AHN B S, PARK Y M.A fault diagnosis expert system for distribution substations [J].IEEE Transactions on Power Delivery, 2000, 15(1): 92-97.

【11】王磊, 陈青, 高湛军. 输电网故障诊断的知识表示方法及其应用[J]. 中国电机工程学报, 2012, 32(4): 85-92.
WANG L, CHEN Q, GAO ZH J. Representation and application of fault diagnosis knowledge in power transmission grids [J]. Proceedings of the CSEE. 2012, 32(4): 85-92.

引用该论文

WANG Bing,ZHANG Hong-quan,SONG Kai,ZHANG Zhen-yu. Fault diagnosis based on knowledge pushing in multi-sensor integration hydrogen detection system[J]. Optics and Precision Engineering, 2015, 23(6): 1742-1748

王冰,张洪泉,宋凯,张震宇. 多传感器集成氢气检测系统的知识推送故障诊断[J]. 光学 精密工程, 2015, 23(6): 1742-1748

被引情况

【1】翟军华,李 莲,段季芳,杨久莉. 一种液晶面板设备故障诊断专家系统. 液晶与显示, 2016, 31(7): 675-679

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF