首页 > 论文 > 激光与光电子学进展 > 52卷 > 9期(pp:91302--1)

差频法产生太赫兹抽运源的光子集成芯片

Photonic Integrated Circuit for Generation of Terahertz Pumping Source by Difference-Frequency Generation

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为实现高效率、小型化、可调谐、室温下稳定运转的半导体太赫兹(THz)波源,提出了采用光子集成技术,将两个并联的分布反馈(DFB)激光器与无源多模干涉耦合器(MMI)集成,输出THz 拍频抽运光束的方案。两DFB 激光器的光栅布拉格波长设计偏调为4.8 nm(0.6 THz),通过改变集成器件中DFB 激光器的注入电流进行波长调谐,每路DFB 能够达到3.9 nm 的波长偏调。将拍频光束通过单模光纤耦合到频域分辨光学门(FROG)中对THz 拍频光束空间拍频包络进行测量,在不同的DFB 区注入电流下,证实了集成芯片在0.184~1.02 THz 频率调谐范围内可室温连续输出用于产生THz 波的有效THz 拍频光束。

Abstract

To approach a high-efficiency, chip-size and widely tunable room temperature semiconductor terahertz (THz) frequency beating optical pumping beam source, an optical-integrated design is adopted. Two multipled distribute feedback (DFB) semiconductor lasers and a multimode interference (MMI) coupler are monolithically integrated on InP based substrate for terahertz frequency beating optical pumping beam generation. The designed Bragg wavelength spacing of the two DFBs is 4.8 nm (0.6 THz). The Bragg wavelength of the two DFBs can be tuned by the injected current. Each of them can red-shift by 3.9 nm. The output THz beating optical beam of the opticalintegrated chip can be coupled into the frequency resolved optical gate (FROG) through single mode fiber. By changing the injected current of the DFBs, room temperature THz frequency beating optical pumping beam source with a tunable frequency range of 0.184~1.02 THz is demonstrated.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:TN365

DOI:10.3788/lop52.091302

所属栏目:集成光学

责任编辑:韩峰

基金项目:国家自然科学基金(61274046, 61335009, 61201103, 61320106013)

收稿日期:2015-02-15

修改稿日期:2015-03-15

网络出版日期:2015-07-20

作者单位    点击查看

孙梦蝶:中国科学院半导体研究所材料科学重点实验室, 北京 100083
谭少阳:中国科学院半导体研究所材料科学重点实验室, 北京 100083
郭菲:中国科学院半导体研究所材料科学重点实验室, 北京 100083
刘松涛:中国科学院半导体研究所材料科学重点实验室, 北京 100083
陆丹:中国科学院半导体研究所材料科学重点实验室, 北京 100083
吉晨:中国科学院半导体研究所材料科学重点实验室, 北京 100083

联系人作者:孙梦蝶(mdsun@semi.ac.cn)

备注:孙梦蝶(1991—),女,硕士研究生,主要从事针对光纤通信和光网络的基于InP 的光子集成芯片方面的研究。

【1】Xu Jingzhou, Zhang Xicheng. Terahertz Science and Technology and Application[M]. Beijing: Peking University Press, 2007: 1-20.
许景周, 张希成. 太赫兹科学技术与应用[M]. 北京: 北京大学出版社, 2007: 1-20.

【2】Zhiyong Tan, Li Gu, Tianhong Xu, et al.. Real-time reflection imaging with terahertz camera and quantum-cascade laser[J]. Chin Opt Lett, 2014, 12(7): 070401.

【3】Zheng Xianhua,Wang Xinke, Sun Wenfeng, et al.. Developments and applications of the terahertz digital holography [J]. Chinese J Lasers, 2014, 41(2): 0209003.
郑显华, 王新柯, 孙文峰, 等. 太赫兹数字全息术的研发与应用[J]. 中国激光, 2014, 41(2): 0209003.

【4】Li Qi, Hu Jiaqi, Li Yunda, et al.. Autofocusing research on terahertz Gabor inline digital holography[J]. Acta Optica Sinica, 2014, 34(s1): s111001.
李琦, 胡佳琦, 李运达, 等. 太赫兹伽栢同轴数字全息自动聚焦研究[J]. 光学学报, 2014, 34(s1): s111001.

【5】Qingzhao Wu, Li Gu, Zhiyong Tan, et al.. Detection of a directly modulated terahertz light with quantum-well photodetector[J]. Chin Opt Lett, 2014, 12(12): 120401.

【6】Zhang Jingshui, Zhu Weiwen, Zhao Yuejin, et al.. Passive THz imaging system based on the crank-rocker mechanism[J]. Acta Optica Sinica, 2013, 33(12): 1211006.
张镜水, 朱维文, 赵跃进, 等. 基于曲柄摇杆机构的被动太赫兹波成像系统[J]. 光学学报, 2013, 33(12): 1211006.

【7】Kim N, Han SP, Ko H, et al.. Tunable CW THz generation detection with compact 1.55 mm detuned dual mode laser diode and InGaAs based photomixer[J]. Opt Express, 2011, 19(16): 15397-15403.

【8】Lianping Hou, Mohsin Haji, Iain Eddie, et al.. Laterally coupled dual-grating distributed feedback lasers for generating mode-beat terahertz signals[J]. Opt Lett, 2015, 40 (2): 182-185.

【9】Yang Qing, Huo Yujing, Duan Yusheng, et al.. Double-longitudinal-mode continuous-wave laser with ultra-large frequency difference used for narrowband terahertz-wave generation[J]. Acta Optica Sinica, 2013, 33(5): 0514002.
杨清, 霍玉晶, 段玉生, 等. 用于产生窄带太赫兹波的超大频差双纵模连续激光器[J]. 光学学报, 2013, 33(5): 0514002.

【10】Yating Zhou, Jie Hou, Xiangfei Chen, et al.. Dual current injection tunable SBG semiconductor laser with asymmetric π equivalent phase shift[J]. Microwave and Optical Technology Letters, 2013, 55(3): 692–696.

【11】Junqi Liu, Jianyan Chen, Tao Wang, et al.. High efficiency and high power continuous-wave semiconductor terahertz lasers at 3.1 THz[J]. Solid-State Electronics, 2013, 81: 68-71.

【12】Qin Xuefei. The Investigation of Mid-Infrared Difference Frequency Laser Generation Based on PPLN Crystal[D]. Jinhua: Zhejiang Norma University, 2013: 1-2.
秦雪飞. 基于PPLN 晶体的中红外差频激光技术研究[D]. 金华: 浙江师范大学, 2013: 1-2.

引用该论文

Sun Mengdie,Tan Shaoyang,Guo Fei,Liu Songtao,Lu Dan,Ji Chen. Photonic Integrated Circuit for Generation of Terahertz Pumping Source by Difference-Frequency Generation[J]. Laser & Optoelectronics Progress, 2015, 52(9): 091302

孙梦蝶,谭少阳,郭菲,刘松涛,陆丹,吉晨. 差频法产生太赫兹抽运源的光子集成芯片[J]. 激光与光电子学进展, 2015, 52(9): 091302

被引情况

【1】卢铁林,袁慧,吴同,张存林,赵跃进. 干涉法测量连续太赫兹波频谱. 激光与光电子学进展, 2016, 53(4): 41202--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF