首页 > 论文 > 中国激光 > 42卷 > 9期(pp:901001--1)

可抑制生物组织散射效应的光学聚焦技术研究进展

Progress in Optical Focusing Techniques Aiming to Suppress Scattering Effect in Biomedical Tissues

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

生物组织对光的散射使得光束通过透镜后无法在组织的深层(大于1 mm 处)聚焦,制约了需要光能聚焦的成像技术(如共聚焦显微、双光子显微)在生物医学领域的应用。为了抑制生物组织的散射效应,将光聚焦到深层组织,需要对入射光的波前进行调制。基于此要求,以下三种光学聚焦技术得以提出并发展:用待聚焦区的光强作为反馈信号的波前整形技术;将声光调制和时间反演(或光学相位共轭)技术相结合进而在散射介质内部实现光学聚焦的技术;对散射介质传输矩阵进行测量的光学聚焦技术。本文对上述光学聚焦技术的研究进展进行了综述,比较并展望了其在生物医学领域中的应用前景。

Abstract

The light passing through lens cannot be directly focused inside biomedical tissues at depth deeper than 1 mm due to strong scattering, which fundamentally limits the use of imaging techniques such as confocal microscopy and two-photon microscopy, since these techniques demand confined light focusing inside tissues. To suppress the effect of light scattering in tissues and focus light deeper, the optical wavefront illuminating tissues should be modulated. To this end, three kinds of techniques are proposed: the wavefront shaping technique which uses the optical intensity in the wanted light-focused zone as the feedback; the time-reversed technique which combines acousto- optic modulation with optical phase conjugation aiming to focus light inside tissues; the technique of measuring transmission matrix of scattering media. These three techniques are reviewed and compared, while a technical prospect is given as for their biomedical applications.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O436.1

DOI:10.3788/cjl201542.0901001

所属栏目:激光器件与激光物理

基金项目:国家自然科学基金(61361160418,61327902)

收稿日期:2015-01-25

修改稿日期:2015-03-03

网络出版日期:--

作者单位    点击查看

杨强:清华大学精密仪器系精密测试技术及仪器国家重点实验室, 北京 100084
曹良才:清华大学精密仪器系精密测试技术及仪器国家重点实验室, 北京 100084
金国藩:清华大学精密仪器系精密测试技术及仪器国家重点实验室, 北京 100084

联系人作者:杨强(qiang_yang@mail.tsinghua.edu.cn)

备注:杨强(1979—),男,博士,助理研究员,主要从事生物医学光子学方面的研究。

【1】Wang L V, Wu H. Biomedical Optics: Principles and Imaging[M]. Hoboken: Wiley, 2007: 323-342.

【2】Xu Kexin, Gao Feng, Zhao Huijuan. Biomedical Photonics (2nd Edition) [M]. Beijing: Science Press, 2011: 212-220.
徐可欣, 高峰, 赵会娟. 生物医学光子学(第2版)[M]. 北京: 科学出版社, 2011: 212-220.

【3】Zhang Zhenxi. New Technologies and Applications of Biomedical Photonics[M]. Beijing: Science Press, 2008: 224-237.
张镇西. 生物医学光子学新技术及应用[M]. 北京: 科学出版社, 2008: 224-237.

【4】Masters B R, So P T C. Confocal microscopy and multi-photon excitation microscopy of human skin in vivo[J]. Optics Express, 2001, 8(1): 2-10.

【5】Dolmans D E, Fukumura D, Jain R K. Photodynamic therapy for cancer[J]. Nature Reviews Cancer, 2003, 3: 380-387.

【6】Born M, Wolf E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (7th Edition) [M]. Yang Jiasun Trans. Beijing: Publishing House of Electronics Industry, 2009: 401-408.
Born M, Wolf E. 光学原理: 光的传播、干涉和衍射的电磁理论(第7版)[M]. 杨葭荪译. 北京: 电子工业出版社, 2009: 401-408.

【7】Soren D K, Bruce J T. Imaging: Focusing light in scattering media[J]. Nature Photonics, 2011, 5: 135-136.

【8】Tyson R. Principles of Adaptive Optics (3rd Edition)[M]. Boca Raton: CRC Press, 2010: 1-10.

【9】Ori K, Eran S, Yaron S. Looking around corners and through thin turbid layers in real time with scattered incoherent light[J]. Nature Photonics, 2012, 6: 549-553.

【10】Mosk A P, Lagendijk A, Lerosey G, et al.. Controlling waves in space and time for imaging and focusing in complex media[J]. Nature Photonics, 2012, 6: 283-292.

【11】Vellekoop I M, Lagendijk A, Mosk A P. Exploiting disorder for perfect focusing[J]. Nature Photonics, 2010, 4: 320-322.

【12】Yaqoob Z, Psaltis D, Feld M S, et al.. Optical phase conjugation for turbidity suppression in biological samples[J]. Nature Photonics, 2008, 2: 110-115.

【13】Vellekoop I M. Controlling the Propagation of Light in Disordered Scattering Media [D]. Enschede: University of Twente, 2008: 40-50.

【14】Jesacher A, Maurer C, Schwaighofer A, et al.. Near-perfect hologram reconstruction with a spatial light modulator[J]. Optics Express, 2008, 16(4): 2597-2603.

【15】Vellekoop I M, Mosk A P. Focusing coherent light through opaque strongly scattering media[J]. Optics Letters, 2007, 32(16): 2309-2311.

【16】Vellekoop I M, Mosk A P. Phase control algorithms for focusing light through turbid media[J]. Optics Communications, 2008, 281(11): 3071-3080.

【17】Beenakker C W J. Random-matrix theory of quantum transport[J]. Reviews of Modern Physics, 1997, 69(3): 731-808.

【18】Dorokhov O N. On the coexistence of localized and extended electronic states in the metallic phase[J]. Solid State Communications, 1984, 51(6): 381-384.

【19】Pendry J. Light finds a way through the maze[J]. Physics, 2008, 1: 20.

【20】Vellekoop I M, Mosk A P. Universal optimal transmission of light through disordered materials[J]. Physical Review Letters, 2008, 101: 120601.

【21】Kong F, Silverman R H, Liu L P, et al.. Photoacoustic- guided convergence of light through optically diffusive media[J]. Optics Letters, 2011, 36(11): 2053-2055.

【22】Tay J W, Lai P, Suzuki Y, et al.. Ultrasonically encoded wavefront shaping for focusing into random media[J]. Scientific Reports, 2014, 4: 3918.

【23】Lai P X, Wang L D, Tay J W, et al.. Photoacoustically guided wavefront shaping for enhanced optical focusing in scattering media[J]. Nature Photonics, 2015, 9: 126-132.

【24】He G S. Optical phase conjugation: Principles, techniques, and applications[J]. Progress in Quantum Electronics, 2002, 26(3): 131-150.

【25】Leith E N, Upatnieks J. Holographic imagery through diffusing media[J]. JOSA, 1966, 56(4): 523.

【26】Cui M, McDowell E J, Yang C H. An in vivo study of turbidity suppression by optical phase conjugation (TSOPC) on rabbit ear[J]. Optics Express, 2010, 18(1): 25-30.

【27】McDowell E J, Cui M, Vellekoop I M, et al.. Turbidity suppression from the ballistic to the diffusive regime in biological tissues using optical phase conjugation[J]. Journal of Biomedical Optics, 2010, 15(2): 025004.

【28】Cui M, Yang C H. Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation[J]. Optics Express, 2010, 18(4): 3444-3455.

【29】Vellekoop I M, Cui M,Yang C H. Digital optical phase conjugation of fluorescence in turbid tissue[J]. Applied Physics Letters, 2012, 101(8): 081108.

【30】Thompson L A, Gardner C S. Instrumentation for Ground-Based Optical Astronomy[M]. New York: Springer, 1988: 337-344.

【31】Xu X, Liu H, Wang L V. Time-reversed ultrasonically encoded optical focusing into scattering media[J]. Nature Photonics, 2011, 5: 154-157.

【32】Yang C H. Time-reversal optical focusing for biophotonics applications[C]. SPIE, 2014, 8978: 89780K.

【33】Liu H, Xu X, Lai P, et al.. Time-reversed ultrasonically encoded optical focusing into tissue-mimicking media with thickness up to 70 mean free paths[J]. Journal of Biomedical Optics, 2011, 16(8): 086009.

【34】Suzuki Y, Xu X, Lai P, et al.. Energy enhancement in time-reversed ultrasonically encoded optical focusing using a photorefractive polymer[J]. Journal of Biomedical Optics, 2012, 17(8): 080507.

【35】Lai P, Xu X, Liu H, et al.. Reflection-mode time-reversed ultrasonically encoded optical focusing into turbid media[J]. Journal of Biomedical Optics, 2011, 16(8): 080505.

【36】Lai P, Xu X, Liu H, et al.. Time- reversed ultrasonically encoded optical focusing in biological tissue[J]. Journal of Biomedical Optics, 2012, 17(3): 030506.

【37】Wang Y M, Judkewitz B, DiMarzio C A, et al.. Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasoundencoded light[J]. Nature Communications, 2012, 3: 928.

【38】Si K, Fiolka R, Cui M. Fluorescence imaging beyond the ballistic regime by ultrasound-pulse-guide digital phase conjugation[J]. Nature Photonics, 2012, 6(10): 657-661.

【39】Lai P, Suzuki Y, Xu X, et al.. Focused fluorescence excitation with time-reversed ultrasonically encoded light and imaging in thick scattering media[J]. Laser Physics Letters, 2013, 10(7): 075604.

【40】Suzuki Y, Tay J W, Yang Q, et al.. Continuous scanning of a time-reversed ultrasonically encoded optical focus by reflection-mode digital phase conjugation[J]. Optics Letters, 2014, 39(12): 3441-3444.

【41】Judkewitz B, Wang Y M, Horstmeyer R, et al.. Speckle-scale focusing in the diffusive regime with time reversal of variance-encoded light (TROVE) [J]. Nature Photonics, 2013, 7: 300-305.

【42】Jurbergs D, Bruder F K, Deuber F, et al.. New recording materials for the holographic industry[C]. SPIE, 2009, 7233: 72330K.

【43】Yang Q, Xu X, Lai P, et al.. Time-reversed ultrasonically encoded optical focusing using two ultrasonic transducers for improved ultrasonic axial resolution[J]. Journal of Biomedical Optics, 2013, 18(11): 110502.

【44】Yang Q, Xu X, Lai P, et al.. Improving the axial resolution in time-reversed ultrasonically encoded (TRUE) optical focusing with dual ultrasonic waves[C]. SPIE, 2014, 8943: 894338.

【45】Liu Y, Lai P, Ma C, et al.. Optical focusing deep inside dynamic scattering media with near-infrared time-reversed ultrasonically encoded (TRUE) light[J]. Nature Communications, 2015, 6: 5904.

【46】Zhou E H J, Ruan H W, Yang C H, et al.. Focusing on moving targets through scattering samples[J]. Optica, 2014, 1(4): 227-232.

【47】Ma C, Xu X, Liu Y, et al.. Time-reversed adapted-perturbation (TRAP) optical focusing onto dynamic objects inside scattering media [J]. Nature Photonics, 2014, 8(12): 931-936.

【48】Popoff S M, Lerosey G, Carminati R, et al.. Measuring the transmission matrix in optics: An approach to the study and control of light propagation in disordered media[J]. Physical Review Letters, 2010, 104: 100601.

【49】Popoff S M, Lerosey G, Fink M, et al.. Image transmission through an opaque material[J]. Nature Communications, 2010, 1(6): 1-5.

【50】Popoff S M, Aubry A, Lerosey G, et al.. Exploiting the time reversal operator for adaptive optics selective focusing, and scattering pattern analysis[J]. Physical Review Letters, 2011, 107: 263901.

【51】Yang Hong, Huang Yuanhui, Gong Changmei, et al.. Advances on techniques of breaking diffraction limitation using scattering medium [J]. Chinese Optics, 2014, 7(1): 1-25.
杨虹, 黄远辉, 龚昌妹, 等. 散射介质超衍射极限技术研究进展[J]. 中国光学, 2014, 7(1): 1-25.

【52】Chang C Y, Cheng L C, Su H W, et al.. Wavefront sensorless adaptive optics temporal focusing-based multiphoton microscopy[J]. Biomedical Optics Express, 2014, 5(6): 1768-1777.

【53】Yoon I, Li J Z, Shim Y K. Advance in photosensitizers and light delivery for photodynamic therapy[J]. Clinical Endoscopy, 2013, 46(1): 7-23.

【54】Tomas C, Michael M, Kishan D. In situ wavefront correction and its application to micromanipulation[J]. Nature Photonics, 2010, 4: 388-394.

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF