首页 > 论文 > 光学学报 > 35卷 > s2期(pp:210002--1)

基于图像分割和自适应支撑权重的立体匹配算法

Stereo Matching Algorithm Based on Image Segmentation and Adaptive Support Weight

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

双目立体匹配是计算机视觉中研究的重点,针对立体匹配在深度不连续、低纹理和场景重复区域容易匹配出错的问题,提出了一种基于图像分割和改进的自适应支撑权重的立体匹配算法。该方法首先根据颜色相似性、欧式距离相似性、梯度相似性和自定义颜色内相关相似性定义初始的匹配代价关系,然后利用mean shift算法分割出不同深度区域的匹配点,根据匹配点所在的深度区域进行匹配代价重定义。在代价聚合的过程中,为了消除光照和噪声的影响,对待匹配点进行rank变换后,再进行视差值的计算,从而得到一个更加准确的视差结果。最后在VS2010软件平台上对Middlebury标准图像进行测试,实验结果表明,该方法得到的视差结果要明显优于现有的局部区域立体匹配方法,且具有很强的稳健性和较高的准确匹配率。

Abstract

Binocular stereo matching is an important issue in computer vision research. In order to solve the problem of stereo matching at the depth discontinuities, low textured regions and repetitive structures incidental matching error, a stereo matching algorithm based on image segmentation and improved adaptive support weight is proposed. the initial matching cost that combines the color similarity, euclidean distance similarity, user-defined inter color correlation similarity and gradient similarity is defined. The mean shift algorithm segment matching pixel is used at different depth regions in order to refine the matching cost. Meanwhile, in the process of cost aggregation, the new cost aggregation is calculated based on compare transform matching pixel by ranking transform in stereo image pairs in order to solve the influence of brightness and noise difference between the stereo image pairs, so a more accurate disparity result can be acquired. Finally, the algorithm is tested by Middlebury stereo benchmark on the VS2010 software platform, and the results show that it has better performance than other local matching methods, and its robustness is very strong and has higher accurate matching rate.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN29

DOI:10.3788/aos201535.s210002

所属栏目:图像处理

责任编辑:宋梅梅  信息反馈

基金项目:国家自然科学基金(61271332)、江苏省仪器平台分析测试课题(BZ201309)、江苏省普通高校专业学位研究生科研实践计划自然科学基金(SJLX_0155)

收稿日期:2015-01-20

修改稿日期:2015-03-01

网络出版日期:--

作者单位    点击查看

龚文彪:南京理工大学光谱成像与智能感知省级重点实验室,江苏 南京 210094
顾国华:南京理工大学光谱成像与智能感知省级重点实验室,江苏 南京 210094
钱惟贤:南京理工大学光谱成像与智能感知省级重点实验室,江苏 南京 210094
路东明:南京理工大学光谱成像与智能感知省级重点实验室,江苏 南京 210094
吕芳:南京理工大学光谱成像与智能感知省级重点实验室,江苏 南京 210094

联系人作者:龚文彪(gongwenbiao2011@163.com)

备注:龚文彪(1990—),男,硕士研究生,主要从事图像处理,立体匹配方面的研究。

【1】Xu Yihua, Wang Dongsheng, Feng Tao, et al.. Stereo computation using radial adaptive windows[C].IEEE Conference on Pattern Recognition, 2002, 3: 595-598.

【2】Yoon K J, Kweon I S. Adaptive support-weight approach for correspondence search [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(4): 650-656.

【3】Gerrits M, Bekaert P. Local stereo matching with segmentation-based outlier rejection[C]. IEEE Conference on Computer and Robot Vision, 2006: 66-66.

【4】Klaus A, Sormann M, Karner K. Segment-based stereo matching using belief propagation and a self-adapting dissimilarity measure[C]. IEEE Conference on Pattern Recognition, 2006, 3: 15-18.

【5】Bleyer M, Gelautz M. A layered stereo matching algorithm using image segmentation and global visibility constraints [J]. ISPRS J Photogrammetry and Remote Sensing, 2005, 59(3): 128-150.

【6】Comaniciu D, Meer P. Mean shift: a robust approach toward feature space analysis [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(5): 603-619.

【7】Hartley R, Zisserman A. Multiple View Geometry in Computer Vision [M]. UK: Cambridge university press, 2003.

【8】Yang Qingxiong, Wang Liang, Yang Ruigang, et al.. Stereo matching with color-weighted correlation, hierarchical belief propagation, and occlusion handling [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(3): 492-504.

【9】Yang Qingxiong. Hardware-efficient bilateral filtering for stereo matching [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(5): 1026-1032.

【10】Kowalczuk J, Psota E T, Perez L C. Real-time stereo matching on CUDA using an iterative refinement method for adaptive support-weight correspondences [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2013, 23(1): 94-104.

【11】Hu Weidong, Zhang Kang, Sun Lifeng, et al.. Virtual support window for adaptive-weight stereo matching[C]. IEEE Conference on Visual Communications and Image Processing (VCIP), 2011: 1-4.

【12】De-Maeztu L, Villanueva A, Cabeza R. Stereo matching using gradient similarity and locally adaptive support-weight[J]. Pattern Recognition Letters, 2011, 32(13): 1643-1651.

【13】Zhang Ke, Lu Jiangbo, Lafruit G. Cross-based local stereo matching using orthogonal integral images [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2009, 19(7): 1073-1079.

引用该论文

Gong Wenbiao,Gu Guohua,Qian Weixian,Lu Dongming,Lv Fang. Stereo Matching Algorithm Based on Image Segmentation and Adaptive Support Weight[J]. Acta Optica Sinica, 2015, 35(s2): s210002

龚文彪,顾国华,钱惟贤,路东明,吕芳. 基于图像分割和自适应支撑权重的立体匹配算法[J]. 光学学报, 2015, 35(s2): s210002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF