首页 > 论文 > 光学学报 > 35卷 > 11期(pp:1123002--1)

涂覆石墨烯的电介质纳米并行线的传输特性

Propagation Properties of Nano Dielectric Parallel Lines Coated with Graphene

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

设计了一种由涂覆了单层石墨烯的双椭圆电介质纳米并行线构成的表面等离子体光波导,采用有限元方法对其传输特性、电磁参数以及结构参数之间的依赖关系进行了研究。结果表明:随着椭圆的中心距离的增大,有效折射率的实部逐渐减小,传播距离先增大后减小,模式面积逐渐增大;椭圆的半短轴对有效折射率、传播距离和模式面积有微调作用;通过优化计算,减小并行线之间的距离,增加并行线的半短轴的长度,可以达到更好的传输效果;工作频率越高,有效折射率的实部越小,传输距离越短,模式面积越大;温度越高,有效折射率的实部越大,传输距离越短,模式面积越小。研究结果为基于石墨烯材料的表面等离子激元光波导的设计、制作和应用提供了理论基础。

Abstract

A kind of surface plasmonic waveguide constructed with double elliptical nano dielectric parallel linescoated with graphene is proposed. The dependence of propagation properties on electromagnetic parameters and structure parameters is studied by using the finite element method.The results show that, when the distance between two ellipses is increased, the real part of the effective refractive index is decreased gradually, and the propagation distance is increased first and then is fallen down, and the mode area is increased gradually. The effective refractive index, the propagation length and the mode area can be adjusted finely by the elliptical semi minor axis. It can achieve better transmission effect by reducing the distance between parallel lines and increasing the length of the semi minor axis of the parallel lines through the optimization calculation. The higher the working frequency is, the smaller the real part of the effective refractive index is, the shorter the propagation distance is, and the larger the mode area is. The higher the temperature is, the larger the real part of the effective refractive index is, the shorter the propagation distance is, and the smaller the mode area is. This work provides a theoretical basis for the design, fabrication and application of the surface plasmon waveguide based on graphene material.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O431

DOI:10.3788/aos201535.1123002

所属栏目:光学器件

基金项目:国家自然科学基金(61178013,61172045)、国家基础科学人才培养基金(J1103210)

收稿日期:2015-05-15

修改稿日期:2015-07-08

网络出版日期:--

作者单位    点击查看

翟利:山西大学物理电子工程学院, 山西 太原 030006
薛文瑞:山西大学物理电子工程学院, 山西 太原 030006
杨荣草:山西大学物理电子工程学院, 山西 太原 030006
韩丽萍:山西大学物理电子工程学院, 山西 太原 030006

联系人作者:翟利(623145530@qq.com)

备注:翟利(1986—),女,硕士研究生,主要从事表面等离子体光波导器件等方面的研究。

【1】K S Novoselov, A K Geim, S V Morozov, et al.. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.

【2】F Javier García de Abajo. Graphene plasmonics: Challenges and opportunities[J]. ACS Photonics, 2014, 1(3): 135-152.

【3】A K Geim , K S Novoselov. The rise of graphene[J]. Nature Material, 2007, 6(3): 183-191.

【4】F H Koppens, D E Chang, F J García de Abajo. Graphene plasmonics: A platform for strong lightmatter interactions[J]. Nano Lett, 2011, 11(8): 3370-3377.

【5】A Vakil, N Engheta. Transformation optics using graphene[J]. Science, 2011, 332(6035): 1291-1294.

【6】M Jablan, H Buljan, M Soljacic′ , et al.. Plasmonics in graphene at infrared frequencies[J]. Phys Rev B, 2009, 80(24): 245435.

【7】Q Bao, K P Loh. Graphene photonics, plasmonics, and broadband optoelectronic devices[J]. ACS Nano, 2012, 6(5): 3677-3694 .

【8】F Bonaccorso, Z Sun, T Hasan, et al.. Graphene photonics and optoelectronics[J], Nat Ptotonics, 2010, 4(9): 611-622.

【9】Sun Xiaoming, Zeng Jie, Zhang Qianyun, et al.. Research of optical fiber surface plasmon wave resonance sensor based on built-in modulation layer[J]. Acta Optica Sinica, 2013, 33(1): 0128002.
孙晓明,曾捷,张倩昀,等.内置调制层型光纤表面等离子体波共振传感器研究[J].光学学报, 2013, 33(1): 0128002.

【10】Wang Yijia, Zhang Chonglei, Wang Rong, et al.. Extracting phase information of surface plasmon resonance imaging system[J]. Acta Optica Sinica, 2013, 33(5): 0524001.
王弋嘉, 张崇磊, 王蓉, 等. 表面等离子体共振成像系统相位提取[J]. 光学学报, 2013, 33(5): 0524001.

【11】Shen Junfeng, Zhang Cuijiao, Zhang Yuquan, et al.. Study on novel nano-heating source based on plasmonic nanotweezers[J]. Acta Optica Sinica, 2014, 34(9): 0924001.
沈军峰, 张翠娇, 张聿全, 等. 基于表面等离激元光镊的新型纳米热源研究[J]. 光学学报, 2014, 34(9): 0924001.

【12】J Lao, J Tao, Q J Wang, et al.. Tunable graphene-based plasmonic waveguides: Nano modulators and nano attenuators[J]. Laser & Photonics Reviews, 2014, 8(4): 569-574.

【13】A Y Nikitin, F Guinea, F J Garcia-Vidal, et al.. Edge and waveguide terahertz surface plasmon modes in graphene micro-ribbons[J]. Phys Rev B, 2011, 84(16): 161407.

【14】J Christensen, A Manjavacas, S Thongrattanasiri, et al.. Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons[J]. Acs Nano, 2012, 6(1): 431-440.

【15】W B Lu, W Zhu, H J Xu, et al.. Flexible transformation plasmonics using graphene[J]. Optics Express, 2013, 21(9): 10475-10482.

【16】P Liu, X Zhang, Z Ma, et al.. Surface plasmon modes in graphene wedge and groove waveguides[J]. Optics Express, 2013, 21(26): 32432-32440.

【17】J Zheng, L Yu, S He, et al.. Tunable pattern-free graphene nanoplasmonic waveguides on trenched silicon substrate[J]. Scientific Reports, 2015, 5: 7987.

【18】Y X Gao, G B Ren, B F Zhu, et al.. Analytical model for plasmon modes in graphene-coated nanowire[J]. Optics Express, 2014, 22(20): 24322-24331.

【19】S He, X Zhang, Y He. Graphene nano-ribbon waveguides of record-small mode area and ultra-high effective refractive indices for future VLSI[J]. Optics Express, 2013, 21(25): 30664-30673.

【20】Y X Gao, G B Ren, B F Zhu, et al.. Single-mode graphene-coated nanowire plasmonic waveguide[J]. Optics Letters, 2014, 39(20): 5909-5912.

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF