首页 > 论文 > 太赫兹科学与电子信息学报 > 13卷 > 3期(pp:511-519)

基于石墨烯的太赫兹光电功能器件研究进展

Recent progress on graphene-based terahertz optoelectronics

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

作为一种新型光电材料,石墨烯独特的能带结构和电子输运特性,使其与太赫兹科学有着密切的内在关系:石墨烯内部的等离子体振荡频率在太赫兹频段;人为调谐石墨烯的禁带宽度在0~0.3 eV 时,正好覆盖太赫兹频段;光电导率的外部可控性等,这些特点使得石墨烯有望成为太赫兹频段新一代高性能设备研制的基础。最近的研究显示,石墨烯在太赫兹波产生、调控、检测等光电功能器件的研制中取得了很好的成果。重点介绍了基于石墨烯的太赫兹光电功能器件,包括太赫兹源器件、可控调控器件及检测器研究的最新进展,并对这一快速发展的研究领域进行了展望。

Abstract

As a new kind of optoelectronic material, based on its unique band structures and electron transport properties, graphene is closely related to terahertz(THz) science: both its variable plasmon resonance and tunable bandgaps(0-0.3 eV) include the THz frequency band; its tunable optical conductivity; etc.. These properties have made graphene a potential candidate for the fabrication of new generation highquality THz devices. Recently, researchers have made great progress in THz generation, manipulation, and detection based on graphene. In this paper, an introduction to the recent progress in graphene-based THz optoelectronics, including THz sources, tunable manipulation devices, and detectors, is given, and the prospects of this fast-developing field are also discussed.

投稿润色
补充资料

中图分类号:TN204

DOI:10.11805/tkyda201503.0511

所属栏目:微电子、微系统与物理电子学

收稿日期:2014-10-24

修改稿日期:2014-12-23

网络出版日期:--

作者单位    点击查看

苏 娟:中国工程物理研究院 电子工程研究所微系统与太赫兹研究中心,四川 绵阳 621999
成彬彬:中国工程物理研究院 电子工程研究所微系统与太赫兹研究中心,四川 绵阳 621999
邓贤进:中国工程物理研究院 电子工程研究所微系统与太赫兹研究中心,四川 绵阳 621999

联系人作者:苏 娟(sjbounce@163.com)

备注:苏 娟(1984-),女,内蒙古自治区鄂尔多斯市人,博士,助理研究员,主要研究方向为新型太赫兹波调控原理和方法.

【1】Mourou G,Stancampiano C V,Blumenthal D. Picosecond microwave pulse generation[J]. Appl. Phys. Lett., 1981,38:470–472.

【2】Auston D H,Cheung K P,Smith P R. Picosecond photo-conducting Hertzian dipoles[J]. Appl. Phys. Lett., 1984,45:284–286.

【3】HU B B,ZHANG X C,Auston D H,et al. Free-space radiation from electro-optic crystals[J]. Appl. Phys. Lett., 1990,56:506–508.

【4】Brown E R,Smith F W,McIntosh K A. Coherent millimeterwave generation by heterodyne conversion in low-temperaturegrown GaAs photoconductors[J]. J. Appl. Phys., 1993,73:1480–1484.

【5】Mittleman D. Sensing With Terahertz Radiation[M]. Berlin,Germany: Springer, 2002.

【6】Fitch J M,Osiander R. Terahertz waves for communications and sensing[J]. Johns Hopkins APL Tech. Dig., 2004,25(4):348–355.

【7】Fitzgerald J,Wallace V P,Jimenez-Linan M,et al. Terahertz pulsed imaging of human breast tumor[J]. Radiology, 2006, 239:533–540.

【8】Dobroiu A,Sasaki Y,Shibuya T,et al. THz-wave spectroscopy applied to the detection of illicit drugs in mail[J]. Proceedings of the IEEE, 2007,95(8):1566-1575.

【9】CHAN W,Deibel J,Mittleman D. Imaging with terahertz radiation[J]. Rep. Prog. Phys., 2007,70:1325–1379.

【10】Lee Y. Principles of Terahertz Science and Technology[M]. Berlin,Germany:Springer, 2009.

【11】O’Hara J F,Withayachumnankul W,Al-Naib I. A review on thin-film sensing with terahertz waves[J]. J. Infrared Millimeter Terahertz Waves, 2012,33(3):245–291.

【12】Tredicucci A,Vitiello M S. Device concepts for graphene-based Terahertz photonics[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014,20(1):8500109

【13】Ryzhii M,Ryzhii V. Injection and population inversion in electrically induced p-n junction in graphene with split gates[J]. Jpn. J. Appl. Phys., 2007,46:L151–L153.

【14】Brey L,Fertig H A. Electronic states of graphene nanoribbons studied with the Dirac equation[J]. Phys. Rev. B, 2006, 73(23):235411.

【15】Son Y W,Cohen M L,Louie S G. Energy gaps in graphene nanoribbons[J]. Phys. Rev. Lett., 2006,97(21):216803.

【16】Dawlaty J. Measurement of the optical absorption spectra of epitaxial graphene from terahertz to visible[J]. App. Phys. Lett., 2008,93:131905.

【17】Falkovsky L A. Optical properties of graphene[J]. J. Phys., Conf. Ser., 2008,129:012004.

【18】Ando T,ZHENG Y,Suzuura H. Dynamical conductivity and zero-mode anomaly in honeycomb lattices[J]. J. Phys. Soc. Jpn., 2002,71(5):1318–1324.

【19】Low T,Avouris P. Graphene plasmonics for terahertz to mid-infrared application[J]. ACS Nano, 2014,8(2):1086-1101.

【20】Nair R R,Blake P,Grigorenko A N,et al. Fine structure constant defines visual transparency of graphene[J]. Science, 2008, 320:1308.

【21】SUN Z P,Hasan T,Torrisi F,et al. Graphene mode-locked ultrafast laser[J]. ACS Nano, 2010,4(2):803–810.

【22】LIU M,YIN X,ZHANG X. Double-layer graphene optical modulator[J]. Nano Lett., 2012,12(3):1482–1485.

【23】Koester S J,LI M. High-speed waveguide-coupled graphene-on-graphene optical modulators[J]. Appl. Phys. Lett., 2012, 100:171107.

【24】Ryzhii V,Otsuji T,Ryzhii M,et al. Effect of plasma resonances on dynamic characteristics of double graphene-layer optical modulator[J]. J. Appl. Phys., 2012,112:104507.

【25】Sensale-Rodriguez B,YAN R,LIU L,et al. Graphene for reconfigurable terahertz optoelectronics[J]. Proceedings of the IEEE, 2013,101(7):1705-1716.

【26】FANG T,Konar A,XING H,et al. Carrier statistics and quantum capacitance of graphene sheets and ribbons[J]. Appl. Phys. Lett., 2007,91(9):092109.

【27】Falkovsky L A,Pershoguba S S. Optical far-infrared properties of a graphene monolayer and multilayer[J]. Phys. Rev. B, 2007,76:153410.

【28】Sensale-Rodriguez B,FANG T,YAN R,et al. Unique prospects for graphene-based terahertz modulators[J]. Appl. Phys. Lett., 2011,99:113104.

【29】Sensale-Rodriguez B,YAN R,Kelly M M,et al. Broadband graphene terahertz modulators enabled by intraband transitions[J]. Nature Commun., 2012,3:780.

【30】Horng J,Chen C-F,GENG B,et al. Drude conductivity of Dirac fermions in graphene[J]. Phys. Rev. B, 2011,83:165113.

【31】Maeng I,Lim S C,Chae S J,et al. Gate-controlled nonlinear conductivity of Dirac fermion in graphene field-effect transistors measured by terahertz time-domain spectroscopy[J]. Nano Lett., 2012,12:551–555.

【32】Jablan M,Buljan H,Soljaccic M. Plasmonics in graphene at infrared frequencies[J]. Phys. Rev. B, 2009,80:245435.

【33】CHEN J,Badioli M,Alonso-González P,et al. Optical nano-imaging of gate-tunable graphene plasmons[J]. Nature, 2012, 487(7405):77-81.

【34】Feia Z,Rodin A S,Andreeva G O,et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging[J]. Nature, 2012,487:72–85.

【35】Vafek O. Thermo-plasma polariton within scaling theory of single-layer graphene[J]. Phys. Rev. Lett., 2006,97:266406.

【36】Hwang H,Das Sarma S. Dielectric function, screening, and plasmons in 2D graphene[J]. Phys. Rev. B, 2007,75:205418-1.

【37】Hwang H,Das Sarma S. Plasmon modes of spatially separated double layer graphene[J]. Phys. Rev. B, 2009,80:205405.

【38】Ryzhii V. Terahertz plasma waves in gated graphene heterostructures[J]. Jpn. J. Appl. Phys., 2006,45:L923.

【39】Ryzhii V,Satou A,Otsuji T. Plasma waves in two-dimensional electron-hole system in gated graphene heterostructures[J]. J. Appl. Phys., 2007,101:024509.

【40】Rana F. Graphene terahertz plasmon oscillators[J]. IEEE Trans. on Nanotechnol., 2008,7(1):91-99.

【41】JU L,GENG B,Horng J,et al. Graphene plasmonics for tunable terahertz metamaterials[J]. Nature Nanotechnol, 2011, 6:630–634.

【42】Thongrattanasiri S,Koppens F H,Garcia de Abajo F J. Complete optical absorption in periodically patterned graphene[J]. Phys. Rev. Lett., 2012,108:047401.

【43】Allen S J,Stormer H L,Hwang J C M. Dimensional resonance of the two-dimensional electron gas in selectively doped GaAs/AlGaAs heterostructures[J]. Phys. Rev. B, 1983,28:4875–4877.

【44】YAN H,LI X,Chandra B,et al. Tunable infrared plasmonic devices using graphene/insulator stacks[J]. Nature Nanotechnol., 2012,7(5):330–334.

【45】Shalaev V M. Electromagnetic properties of small-particle composites[J]. Phys. Rep., 1996,272(2-3):61–137.

【46】Genov D A,Sarychev A K,Shalaev V M,et al. Resonant field enhancement from metal nanoparticle arrays[J]. Nano Lett., 2004,4:153–158.

【47】Ryzhii V,Ryzhii M,Otsuji T. Negative dynamic conductivity of graphene with optical pumping[J]. J. Appl. Phys., 2007,101:083114.

【48】Karasawa H,Komori T,Watanabe T,et al. Observation of amplified stimulated terahertz emission from optically pumped heteroepitaxialgraphene-on-silicon materials[J]. J. Infrared Millim. THz Waves, 2011,32:655–665.

【49】Boubanga-Tombet S,Chan S,Watanabe T,et al. Ultrafast carrier dynamics and terahertz emission in optically pumped graphene at room temperature[J]. Phys. Rev. B, 2012,85:035443-1–035443-6.

【50】Otsuji T,Boubanga-Tombet S,Satou A,et al. Spectroscopic study on ultrafast carrier dynamics and terahertz amplified stimulated emission in optically pumped graphene[J]. J. Infrared Milli. Terhertz Waves, 2012,33:825–838.

【51】Otsuji T,Watanabe T,Boubanga S A,et al. Emission and detection of terahertz radiation using two-dimensional electrons in III–V semiconductors and graphene[J]. IEEE Transactions on Terahertz Science and Technology, 2013,3(1):63-71.

【52】Ryzhii V,Ryzhii M,Mitin V,et al. Effect of heating and cooling of photogenerated electron-hole plasma in optically pumped graphene on population inversion[J]. Jpn. J. Appl. Phys., 2011,50:094001-1–094001-9.

【53】Ryzhii V,Ryzhii M,Mitin V,et al. Toward the creation of terahertz graphene injection laser[J]. J. Appl. Phys., 2011,110: 094503-1–094503-9.

【54】Dubinov A,Aleshkin V Y,Ryzhii M,et al. Terahertz laser with optically pumped graphene layers and Fabry-Perot resonator[J]. Appl. Phys. Express, 2009,2:092301-1–092301-3.

【55】Ryzhii V,Dubinov A,Otsuji T,et al. Terahertz lasers based on optically pumped multiple graphene structures with slot-line and dielectric waveguides[J]. J. Appl. Phys., 2010,107:054505-1–054505-5.

【56】Popov V V,Polischuk O V,Davoyan A R,et al. Plasmonic terahertz lasing in an array of graphene nanocavities[J]. Physical Review B, 2012,86:195437.

【57】Nozokido T,Minamide H,Mizuno K,et al. Generation of submillimeter wave short pulses and their measurements[J]. Riken Review, 1995,11:11-12.

【58】Okada T,Tanaka K. Photo-designed terahertz devices[J]. Scientific Reports, 2011:1-5.

【59】Busch S,Scherger B,Scheller M.et al. Optically controlled terahertz beam steering and imaging[J]. Optics Letters, 2012, 37(8):1391-1393.

【60】CHEN T, Padilla W J, Zide J M O,et al. Active terahertz metamaterial devices[J]. Nature, 2006,444(7119):597-600.

【61】Paul O,Imhof C,Lngel B,et al. Polarization-independent active metamaterial for high-frequency terahertz modulation[J]. Optics Express, 2009,17(2):819-827.

【62】Shrekenhamer D,Rout S,Strikwerda A C,et al. High speed terahertz modulation from metamaterials with embedded high electron mobility transistors[J]. Optics Express, 2011,19(10):9968-9975.

【63】LI J S,HE J L,HONG Z. Terahertz wave switch based on silicon photonic crystals[J]. Applied Optics, 2007,46(22):5034-5037.

【64】Joannopoulos J D,Johnson S G,Winn J N,et al. Photonic crystals:molding the flow of light[J]. Princeton University Press, 2011.

【65】Libon H,Baumgartner S,Hempel M,et al. An optically controllable terahertz filter[J]. Appl. Phys. Lett., 2000,26(20):2821- 2823.

【66】Sensale-Rodriguez B,YAN R,Rafique S,et al. Extraordinary control of terahertz beam reflectance in graphene electro-absorption modulators[J]. Nano Letters, 2012,12(9):4518-4522.

【67】Sensale-Rodriguez B,Rafique S,Yan R,et al. Terahertz imaging employing graphene modulator arrays[J]. Opt. Exp., 2013, 21:2324–2330.

【68】刘海涛,文岐业,杨青慧,等. 石墨烯太赫兹调制器及330 GHz 无线通信系统[J]. 太赫兹科学与电子信息学报, 2014, 12(4):481-486.
LIU Haitao,WEN Qiye,YANG Qinghui,et al. Graphene terahertz modulator and 330 GHz wireless communication system[J]. Journal of Terahertz Science and Electronic Information Technology, 2014,12(4):481-486.

【69】Sensale-Rodriguez B,Yan R,ZHU M,et al. Efficient terahertz electro-absorption modulation employing graphene plasmonic structures[J]. Applied Physics Letters, 2012,101(26):261115.

【70】Sensale-Rodriguez B. Graphene-insulator-graphene active plasmonic terahertz devices[J]. Appl. Phys. Lett., 2013,103(12): 123109.

【71】YAN R,Sensale-Rodriguez B,LIU L,et al. A new class of electrically tunable metamaterial terahertz modulators[J]. Optics Express, 2012,20(27):28664-28671.

【72】Lee S H,Choi M,Kim T T,et al. Switching terahertz waves with gate-controlled active graphene metamaterials[J]. Nature Materials, 2012,11(11):936-941.

【73】CHEN H T,LU H,Azad A K,et al. Electronic control of extraordinary terahertz transmission through subwavelength metal hole arrays[J]. Opt. Exp., 2008,16:7641–7648.

【74】Lee S H,Choi J,Kim H D,et al. Ultrafast refractive index control of a terahertz graphene metamaterial[J]. Scientific Reports, 2013:1-6.

【75】Sizov F,Rogalski A. THz detectors[J]. Prog. Quantum Electron., 2010,34:278–347.

【76】Knap W,Dyakonov M,Coquillat D,et al. Field effect transistors for terahertz detection: physics and first imaging applications[J]. J. Infrared Millimeter Terahertz Waves, 2009,30:1319–1337.

【77】Ojefors E,Pfeiffer U R,Lisauskas A,et al. A 0.65 THz focal-plane array in a quarter-micron CMOS process technology[J]. IEEE J. Solid-State Circuits, 2009,44:1968–1976.

【78】Vitiello S,Coquillat D,Viti L,et al. Room-temperature terahertz detectors based on semiconductor nanowire field-effect transistors[J]. Nano Lett., 2012,12:96–101.

【79】Ryzhii V,Ryzhii M. Graphene bilayer field-effect phototransistor for terahertz and infrared detection[J]. Phys. Rev. B, 2009,79:245311.

【80】Ryzhii V,Ryzhii M,Mitin V,et al. Terahertz and infrared photodetection using p-i-n multiple-graphene-layer structures[J]. J. Appl. Phys., 2010,107:054512.

【81】Ryzhii V,Otsuji T,Ryzhii M,et al. Double graphene-layer plasma resonances terahertz detector[J]. J. Phys. D: Appl. Phys., 2012,45:302001.

【82】Vicarelli L,Vitiello M S,Coquillat D,et al. Graphene field effect transistors as room-temperature terahertz detectors[J]. Nature Mat., 2012,11:865–871.

【83】Mittendorff M,Winnerl S,Kamann J,et al. Ultrafast graphene-based broadband THz detector[J]. Appl. Phys. Lett., 2013, 103(2):021113.

引用该论文

SU Juan,CHENG Binbin,DENG Xianjin. Recent progress on graphene-based terahertz optoelectronics[J]. Thz, 2015, 13(3): 511-519

苏 娟,成彬彬,邓贤进. 基于石墨烯的太赫兹光电功能器件研究进展[J]. 太赫兹科学与电子信息学报, 2015, 13(3): 511-519

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF