首页 > 论文 > 光学 精密工程 > 23卷 > 10期(pp:2989-2996)

基于区域划分的红外超分辨率重建

Infrared super resolution reconstruction based on region division

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

提出了红外超分辨率重建系统以获取高分辨率红外数据。首先,根据红外图像获取过程建立了数学模型,讨论了降采样、模糊、运动以及高斯噪声对红外系统的影响; 在非退化特征提取的基础上提出了基于特征的亚像素配准算法,其根据所得到的非退化特征应用归一化均方根误差来估计两帧之间的亚像素位移。然后,分析了传统全变分因子在高分辨重建时的不足并对其进行改进; 利用区域划分将图像划分为平滑区域和细节区域,并根据区域的不同情况自适应全变分因子,从而使细节区域不至于过平滑。最后,利用MM(Majorization Minimixation)算法对合成的低分辨率红外图像和真实红外图像进行了超锐度重建。 与同类相关算法的比较实验显示: 所提算法亚像素配准最大误差为0.09 pixel,重建后的红外图像质量优于其他同类算法。所提算法可以对低分辨红外图像序列进行有效重建,具有配准精度高、重建图像细节丰富等特点,可应用于各种红外成像系统。

Abstract

An infrared super resolution reconstruction system was proposed to acquire high resolution infrared images. A mathematical model was established according to the procedure of image acquisition. The effect of down-sampling, blurring, motion, and Gussian noise on the infrared system were discussed. Then, a non-degradation feature based sub-pixel motion estimation method was proposed. On the basis of obtained non-degradation, the normalized root of mean square was utilized to estimate the sub-pixel motion between two frames. Furthermore, drawbacks of the conventional total variation factor were analyzed and improved when it was applied in the reconstruction procedure. The region division method was used to divide the image into smooth regions and detail regions, then the new variational factor was able to adaptive to different regions according to their characteristics, and the detail regions could not be over-smoothed. Finally, the experiments on both synthetic and real infrared image sequences were performed by MM(Majorization Minimization). The results indicate that the maximum error of proposed algorithm is 0.09 pixel and the quality of the reconstructed image is better than those of the other algorithms. The proposed algorithm has higher sub-pixel registration accuracy and rich image details,and is able to reconstruct the sequence of low resolution infrared images efficiently.It is suitable for various infrared applications.

中国激光微信矩阵
补充资料

中图分类号:TN216;TP391

DOI:10.3788/ope.20152310.2989

所属栏目:信息科学

基金项目:国家自然科学基金资助项目(No. 61171155, No. 61571364); 陕西省自然科学基金资助项目(No. 2012JM8010)

收稿日期:2015-07-06

修改稿日期:2015-08-24

网络出版日期:--

作者单位    点击查看

翟海天:西北工业大学 电子信息学院,陕西 西安 710072
李辉:西北工业大学 电子信息学院,陕西 西安 710072
李彬:西北工业大学 电子信息学院,陕西 西安 710072

联系人作者:翟海天(haitian_1988@mail.nwpu.edu.cn)

备注:翟海天(1989-),男,山东潍坊人,博士研究生,2011年于西北工业大学获得硕士学位,主要研究领域为目标识别及红外超分辨重建。

【1】LIU H C, LI S T, YIN H T. Infrared surveillance image super resolution via group sparse representation [J]. Optics Communications, 2013, 289: 45-52.

【2】LAHIRI B B, BAGAVATHIAPPAN S, JAYAKUMAR T, et al.. Medical applications of infrared thermography: A review [J]. Infrared Physics and Technology, 2012, 55(4): 221-235.

【3】李志军,王卫华,牛照东,等. 城区红外遥感云层检测技术[J].中国激光,2012,39(11): 121-126.
LI ZH J, WANG W H, NIU ZH D, et al.. Cloud recognition from infrared remote sensing images under city background[J]. Chinese Journal of Lasers, 2012, 39(11): 121-126. (in Chinese)

【4】WANG P, SUN J Y, LI L L, et al.. Image quality modeling in forward-looking infrared building detection[J]. Advances in Information Sciences and Service Sciences, 2012, 4(23): 757-764.

【5】刁伟鹤,毛峡,常乐. 一种新的红外目标图像质量评价方法[J].航空学报,2014,31(10): 2026-2033.
DIAO W H, MAO X, CHANG L. A new quality estimation method for infrared target images[J]. Acta Aeronautica et Astronautica Sinica, 2014, 31(10): 2026-2033. (in Chinese)

【6】邓承志, 田伟, 汪胜前,等. 近似稀疏正则化的红外图像超分辨率重建[J]. 光学 精密工程, 2014, 22(6): 1648-1654.
DENG CH ZH, TIAN W, WANG SH Q, et al.. Super-resolution reconstruction of approximate sparsity regularized infrared images[J]. Opt. Precision Eng., 2014, 22(6): 1648-1654. (in Chinese)

【7】彭真明, 景亮, 何艳敏,等. 基于多尺度稀疏字典的多聚焦图像超分辨融合[J]. 光学 精密工程, 2014, 22(1): 169-176.
PENG ZH M, JING L , HE Y M, et al.. Superresolution fusion of multi-focus image based on multiscale sparse dictionary[J]. Opt. Precision Eng., 2014, 22(1): 169-176. (in Chinese)

【8】贺明,王亚弟,王新赛,等. 场景自适应的红外焦平面成像系统灰度超分辨技术[J].红外与激光工程,2014, 43(7): 2138-2142.
HE M, WANG Y D, WANG X S, et al.. Adaptive scene-based gray super-resolution technology of infrared focal plane imaging system[J]. Infrared and Laser Engineering, 2014, 43(7): 2138-2142.(in Chinese)

【9】孙玉宝,韦志辉,肖亮,等. 多形态稀疏性正则化的图像超分辨率算法[J].电子学报,2010,38(12): 2898-2903.
SUN Y B, WEI ZH H, XIAO L, et al.. Multimorphology sparsity regularized image super-resolution [J]. Acta Electronica Sinica, 2010, 38(12): 2898-2903. (in Chinese)

【10】HU X Y, PENG S L, HWANG W L. Learning adaptive interpolation kernels for fast single-image super resolution[J]. Signal, Image and Video Processing, 2014, 8(6): 1077-1086.

【11】CHEN H H, XUE J L, ZHANG S, et al.. Image super-resolution based on adaptive cosparse regularisation [J]. Electronics Letters, 2014, 50(24): 1834-1836.

【12】龚卫国,潘飞宇,李进明. 用双层重建法实现单幅图像的超分辨率重建[J]. 光学 精密工程, 2014, 22(3): 720-729.
GONG W G, PAN F Y, LI J M. Single-image super-resolution reconstruction via double layer reconstructing[J]. Opt. Precision Eng., 2014, 22(3): 720-729. (in Chinese)

【13】陈健,高慧斌,王伟国,等.超分辨率复原方法相关原理研究[J]. 中国光学, 2014, 7(6): 897-910.
CHEN J,GAO H B, WANG W G, et al.. Correlation theory of super-resolution restoration method [J]. Chinese Optics, 2014, 7(6): 897-910. (in chinese)

【14】潘宗序,禹晶,肖创柏,等. 基于自适应多字典学习的单幅图像超分辨率算法[J].电子学报,2015,43(2): 209-216.
PAN Z X, YU J, XIAO CH B, et al.. Single image super resolution based on adaptive multi-dictionary learning[J]. Acta Electronica Sinica, 2015, 43(2): 209-216. (in Chinese)

【15】ZHANG Y H, DU Y, LING F, et al.. Example-based super-resolution land cover mapping using support vector regression[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(4): 1271-1283.

【16】QIN F Q, ZHU L H, CAO L L, et al.. Blind single-image super resolution reconstruction with defocus blur[J]. Sensors and Transducers, 2014, 169(4): 77-83.

【17】MAYBOUDI L S, BIRK A M, ZAK G, et al.. Infrared observations and finite element modeling of a laser transmission welding process[J]. Journal of Laser Applications, 2009, 21(3): 111-118.

【18】BAI J Q, ZHAO C G, WANG X Y, et al.. Image registration and noise removed for infrared subpixel-shifted images[C]. Proceedings of SPIE - The International Society for Optical Engineering, 2014, 9142.

【19】LV X G, LE J, HUANG J, et al.. A fast high-order total variation minimization method for multiplicative noise removal[J]. Mathematical Problems in Engineering, 2013,Doi: 10.1155/2013/834035.

【20】YUAN Q Q, ZHANG L P, SHEN H F. Multiframe super-resolution employing a spatially weighted total variation model [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2012, 22(3): 379-392.

【21】XU M X, SUN Q S, HUANG C R, et al.. Super-resolution imaging based on generalized total variation regularization[J]. Sensor Letters, 2014, 12(2): 345-351.

【22】杨名宇,李刚.利用区域信息的航拍图像分割[J]. 中国光学,2014,7(5): 779-785.
YANG M Y, LI G. Aerial image segmentation with region information[J]. Chinese Optics, 2014, 7(5): 779-785. (in Chinese)

引用该论文

ZHAI Hai-tian,LI Hui,LI Bin. Infrared super resolution reconstruction based on region division[J]. Optics and Precision Engineering, 2015, 23(10): 2989-2996

翟海天,李辉,李彬. 基于区域划分的红外超分辨率重建[J]. 光学 精密工程, 2015, 23(10): 2989-2996

被引情况

【1】符冉迪,周颖,颜文,尹曹谦. 基于TV-L1分解的红外云图超分辨率算法. 光学 精密工程, 2016, 24(4): 937-944

【2】李方彪,何 昕,魏仲慧,马 鑫. 基于超分辨率重建的亚像素图像配准. 光学 精密工程, 2017, 25(2): 477-484

【3】郑伟勇,李艳玮,周 兵. 基于L0范数稀疏表达的图像盲超分辨率重建. 电光与控制, 2017, 24(12): 112-115

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF