首页 > 论文 > 光子学报 > 44卷 > 11期(pp:1106003--1)

膜层传输矩阵理论在布拉格光纤光栅分析中的应用

Fiber Bragg Grating Analyzed by Transfer Matrix Theory of Membrane Layer

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

利用膜层传输矩阵理论研究折射率调制对布拉格光纤光栅传输特性影响.根据传输矩阵理论计算光栅折射率的调制幅度、光栅长度、调制方法等对布拉格光纤光栅的反射率、反射峰波长和半幅宽度的影响.结果表明:膜层传输矩阵理论与传统传输矩阵法、耦合模理论对布拉格光纤光栅特性分析结论一致;采用高调制长度、低调制幅度可以获得良好的布拉格光纤光栅反射峰,而反射主峰位置改变需用调整调制周期.实验和理论对比分析了主峰在1 550 nm波长的布拉格光纤光栅反射峰情况,验证了该方法的可行性.与传统方法相比,膜层传输矩阵法计算公式简单、运行速度快,可应用于布拉格光纤光栅辅助设计.

Abstract

Membrane transfer matrix theory was used to study the influence between modulation refractive index and transmission characteristics of optical Fiber Bragg Grating (FBG). The influence of grating refractive index modulation amplitude,grating length and modulation method on reflectivity,the reflection peak wavelength and half width of FBG is calculated based on transfer matrix theory. The results show that characteristics of FBG analyzed by the Membrane layer transfer matrix theory,the traditional transfer matrix method and the coupled-mode theory is consistent;high modulation length,low modulation amplitude can obtain good FBG reflection peak,and the main reflection peak position need adjusted by the modulation cycle. The method is verified through the experiment and theoretical analysis of the main reflection peak of FBG in the 1550 nm. Membrane layer transfer matrix method can be applied to the FBG aided design for its simple calculation formula,fast speed compared with traditional methods.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN29

DOI:10.3788/gzxb20154411.1106003

基金项目:福建省科技重点项目(No.2013H0039)、福建省自然科学基金(No.2013J01251)和莆田学院支持项目(No.2014056)资助

收稿日期:2015-03-30

修改稿日期:2015-09-02

网络出版日期:--

作者单位    点击查看

谢海鹤:厦门大学 机电工程系,福建 厦门 361005莆田学院 机电工程学院,福建 莆田 351100
林振衡:莆田学院 机电工程学院,福建 莆田 351100
颜黄苹:厦门大学 机电工程系,福建 厦门 361005
陈延平:厦门大学 机电工程系,福建 厦门 361005
黄元庆:厦门大学 机电工程系,福建 厦门 361005

联系人作者:谢海鹤(haihexie@163.com)

备注:谢海鹤(1983- ),男,讲师,博士,主要研究方向为传感技术及检测方法.

【1】HILL K O,FUJII Y,JOHNSON D C,et al. Photosensitivity in optical fiber waveguide: application to reflection filter fabrication[J]. Applied Physics Letters,1978,32(10):647-649.

【2】YUYA T,SHINJI Y. High-speed dispersion-tuned wavelength-swept fiber laser using a reflective SOA and a chirped FBG.[J]. Optics Express,2013,21(4):5130-5139.

【3】ZHANG Ji-jun,WU Zu-tang,PAN Guo-feng,et al. Design of optical fiber grating-based high-precision and low-frequency vibration sensor[J]. Acta Photonica Sinica,2014,43(S1):0128001.张继军,吴祖堂,潘国锋,等. 低频高灵敏度光纤Bragg光栅振动传感器设计[J]. 光子学报,2014,43(S1):0128001.

【4】HU Jun,YANG Yuan-hong,LIU Xue-jing. Gap fiber bragg grating based micro-gap and temperature simultaneous measurement techology[J]. Chinese Journal of Lasers,2014,41(11): 1108003.胡军,杨远洪,刘学静. 基于间隙光纤光栅的微间隙与温度同时测量技术[J]. 中国激光,2014,41(11):1108003.

【5】ERDOGAN T. Fiber grating spectra[J]. IEEE Journal of Lightwave Technology,1997,15(8):1277-1294.

【6】YABLONOVITCH E. Inhibited spontaneous emission in solid-state physics and electronics[J]. Physical Review Letters,1995,58(20):841-844.

【7】WANG Hui,LI Yong-ping. An eigen matrix method for obtaining the band structure of photonic crystals[J]. Acta Physical Sinica. 2001,50(11):2172-2178.王辉,李永平. 用特征矩阵法计算光子晶体的带隙结构[J]. 物理学报,2001,50(11):2172-2178.

【8】LIN Guo-hua,ZHANG Yu. Band gaps characters of one-dimension photonic crystal with dielectric constant modulated by random function[J]. Journal of Nanjing Normal University(Natural Science Edition),2009,32(1): 47-50.林国华,张羽. 应用特征矩阵法研究介电常数受任意函数调制的一维光子晶体的带隙结构及其特性[J]. 南京师大学报(自然版),2009,32(1): 47-50.

【9】WANG Zhi,REN Guo-bin,PEI Li,et al. Investigating the fiber bragg grating in the scope of the photonic crystal[J]. Acta Optica Sinica,2003,23(11): 1291-1295.王智,任国斌,裴丽,等. 光子晶体理论应用于光纤布拉格光栅的研究[J]. 光学学报. 2003,23(11): 1291-1295.

【10】BAO Ji-long,ZHANG Xian-min,CHEN Kang-sheng,et al. Analysis of dual wavelength fiber optic bragg grating using matrix method[J]. Acta Photonica Sinica[J],2000,29(1):87-90.鲍吉龙,章献民,陈抗生,等. 双波长光纤光栅的矩阵分析[J]. 光子学报. 2000,29(1):87-90.

引用该论文

XIE Hai-he,LIN Zhen-heng,YAN Huang-ping,CHEN Yan-ping,HUANG Yuan-qing. Fiber Bragg Grating Analyzed by Transfer Matrix Theory of Membrane Layer[J]. ACTA PHOTONICA SINICA, 2015, 44(11): 1106003

谢海鹤,林振衡,颜黄苹,陈延平,黄元庆. 膜层传输矩阵理论在布拉格光纤光栅分析中的应用[J]. 光子学报, 2015, 44(11): 1106003

被引情况

【1】董小伟,郭盼,刘文楷. 基于相移光纤光栅微分器超短光脉冲整形. 光子学报, 2016, 45(2): 206003--1

【2】沈小燕,韩娅,张良岳,李东升,孙志鹏. FBG分布式非均匀应变重构准确度分析研究. 光子学报, 2016, 45(12): 1206003--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF