首页 > 论文 > 中国激光 > 43卷 > 2期(pp:204002--1)

新型声学分辨率光声显微镜系统照明设计

Novel Illumination Design of Acoustic Resolution Photoacoustic Microscopy System

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

声学分辨率光声显微镜探测深度可达厘米量级,已有声学分辨率光声显微镜照明方式的主流设计方案在明场、暗场照明方式切换,光能利用率等方面仍存在不足,在一定程度上限制了声学分辨率光声显微镜系统的应用范围。提出了一种能够提高光能利用率,可实现明场、暗场照明切换并增大调节范围的声学分辨率光声显微镜系统设计,利用凸透镜对光束的会聚功能,对发散环形光束产生一定程度的聚焦,减小环形光束的环带尺寸。蒙特卡罗模拟结果显示,最终入射在组织表面的光斑直径得到有效减小,组织中超声换能器有效探测区域的光能流量分布最多可增强6倍,因此光声信号强度也相应地得到线性增强;与此同时,凸透镜的加入还增加了系统光聚焦深度的调节范围,在超声换能器聚焦深度不变的情况下,调节系统的光聚焦深度,有助于在不同样品中获得最佳的光声信号强度。

Abstract

Imaging depth of acoustic resolution photoacoustic microscopy is capable of reaching the centimeter level. There are several drawbacks regarding to the mainstream illumination designs of current acoustic resolution photoacoustic microscopy systems, e.g. switch between bright field illumination and dark field illumination is not available, and the utilization efficiency of laser energy is very low. Therefore, the application of the system is limited. A novel optical illumination design has been proposed to overcome these limitations. A convex lens is applied to focus the diverging ring-shape light before it is reflected by the optical condenser, as a result, the ultimate laser spot on the sample surface can be smaller. The Monte Carlo simulation results show that laser fluence within the volume of effective ultrasound detection has been improved by as much as 6 times, and therefore the intensity of photoacoustic signals can be linearly increased as well. On the other hand, the tuning range of optical focus depth of the system has also been expanded, and after specific tuning, optimal photoacoustic signals can be obtained within different kinds of samples.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O435

DOI:10.3788/cjl201643.0204002

所属栏目:生物医学光子学与激光医学

基金项目:国家自然科学基金(81427804,61405234,81430038)、深圳市科创委基础研究项目(JCYJ20140416122811974)

收稿日期:2015-09-23

修改稿日期:2015-10-22

网络出版日期:--

作者单位    点击查看

曾光:中国计量学院光学与电子科技学院, 浙江 杭州 310018中国科学院深圳先进技术研究院生物医学光学与分子影像研究室, 广东 深圳 518055
石岩:中国计量学院光学与电子科技学院, 浙江 杭州 310018
宋亮:中国科学院深圳先进技术研究院生物医学光学与分子影像研究室, 广东 深圳 518055
刘成波:中国科学院深圳先进技术研究院生物医学光学与分子影像研究室, 广东 深圳 518055

联系人作者:曾光(gz_1936@sina.com)

备注:曾光(1989—),男,硕士研究生,主要从事光声显微镜系统设计方面的研究。

【1】Maslov K, Stoica G, Wang L V. In vivo dark-field reflection mode photoacoustic microscopy[J]. Optics Letters, 2005, 30(6): 625-627.

【2】Song W, Wei Q, Jiao S. Integrated photoacoustic ophthalmoscopy and spectral-domain optical coherence tomography[J]. Journal of Visualized Experiments, 2013, (71): e4390.

【3】Wang H, Liu C, Song L. In vivo photoacoustic molecular imaging of breast carcinoma with folate receptor-targeted indocyanine green nanoprobes[J]. Nanoscale, 2014, 23: 14270-14279.

【4】Lin R, Chen J, Song L. Longitudinal label-free optical-resolution photoacoustic microscopy of tumor angiogenesis in vivo[J]. Quantitative Imaging in Medicine and Surgery, 2015, 5(1): 23-29.

【5】Song W, Liu W, Zhang H F. Laser-scanning Doppler photoacoustic microscopy based on temporal correlation[J]. Applied Physics Letters, 2013, 102: 203501.

【6】Zeng Lüming, Liu Guodong, Yang Diwu. Compact optical-resolution photoacoustic microscopy system based on a pulsed laser diode[J]. Chinese J Lasers, 2014, 41(10): 1004001.
曾吕明, 刘国栋, 杨迪武. 基于脉冲激光二极管的小型化光学分辨式光声显微成像系统[J]. 中国激光, 2014, 41(10): 1004001.

【7】Maslov K, Zhang H F, Wang L V. Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries[J]. Optics Letters, 2008, 33(9): 929-931.

【8】Sivaramakrishnan M, Maslov K, Wang L V. Limitations of quantitative photoacoustic measurements of blood oxygenation in small vessels [J]. Physics in Medicine and Biology, 2007, 52(5): 1349-1361.

【9】Wang L, Maslov K, Wang L V. Video-rate functional photoacoustic microscopy at depths[J]. Journal of Biomedical Optics, 2012, 17(10): 106007.

【10】Song K H, Wang L V. Deep reflection-mode photoacoustic imaging of biological tissue[J]. Journal of Biomedical Optics, 2007, 12(6): 060503.

【11】Zhang H F, Maslov K, Li M. In vivo volumetric imaging of subcutaneous microvasculature by photoacoustic microscopy[J]. Optics Express, 2006, 14(20): 9317-9323.

【12】Wang L, Jacques A L, Zheng L. MCML - Monte Carlo modeling of light transport in multi-layered tissues[J]. Computer Methods and Programs in Biomedicine, 1995, 47: 131-146.

【13】Jin Sai, Tan Wenjiang, Liu Xin. Temporal and spatial characteristics of ultrashort pulse propagation in turbid media[J]. Chinese J Lasers, 2014, 41(7): 0702004.
靳赛, 谭文疆, 刘鑫. 超短脉冲在散射介质中传播的时间和空间特性研究[J]. 中国激光, 2014, 41(7): 0702004.

【14】Zhang Yong, Chen Bin, Li Dong. A three-dimensional geometric Monte Carlo method for simulation of light propagation in biological tissues[J]. Chinese J Lasers, 2015, 42(1): 0104003.
张永, 陈斌, 李东. 一种模拟生物组织内光传播的三维几何蒙特卡洛方法[J]. 中国激光, 2015, 42(1): 0104003.

【15】Jia Hao, Chen Bin, Li Dong. Unstructured grid based Monte Carlo method for the simulation of light propagation in skin tissues[J]. Chinese J Lasers, 2015, 42(4): 0404001.
贾浩, 陈斌, 李东. 模拟皮肤组织中光传播的非结构化网格蒙特卡罗法[J]. 中国激光, 2015, 42(4): 0404001.

【16】Wang L V, Wu H-I. Biomedical Optics[M]. New Jersey: John Wiley & Sons, Inc., 2007: 5-8.

引用该论文

Zeng Guang,Shi Yan,Song Liang,Liu Chengbo. Novel Illumination Design of Acoustic Resolution Photoacoustic Microscopy System[J]. Chinese Journal of Lasers, 2016, 43(2): 0204002

曾光,石岩,宋亮,刘成波. 新型声学分辨率光声显微镜系统照明设计[J]. 中国激光, 2016, 43(2): 0204002

被引情况

【1】杨萍,魏丹,庞恺,王麒炎,周泉雨,魏勋斌. 在体光声流式细胞术在循环肿瘤细胞检测中的研究进展. 激光与光电子学进展, 2017, 54(9): 90001--1

【2】张娜,冯金超,李哲,贾克斌. 基于Lanczos双对角化的快速光声成像重建方法. 中国激光, 2018, 45(3): 307018--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF