首页 > 论文 > Chinese Optics Letters > 14卷 > 1期(p:010005)

Time-division multiplexing holographic display using angular-spectrum layer-oriented method (Invited Paper)

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

A time-division multiplexing method for computer-generated holograms (CGHs) is proposed to solve the problem of the limited space-bandwidth product. A three-dimensional (3-D) scene is divided into multiple layers at different depths. The CGH corresponding to each layer is calculated by an angular-spectrum algorithm that is effective at a wide range of propagation distances. All of the CGHs are combined into several group-CGHs. These group-CGHs are sequentially uploaded onto one spatial light modulator at a high frame rate. The space-bandwidth product can be benefited by the time-division processing of the CGHs. The proposed method provides a new approach to achieve high quality 3-D display with a fast and accurate CGH computation.

广告组1.2 - 空间光调制器+DMD
补充资料

DOI:10.3788/COL201614.010005

所属栏目:General

收稿日期:2015-09-15

录用日期:2015-10-27

网络出版日期:2015-12-14

作者单位    点击查看

Yan Zhao:State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China
Liangcai Cao:State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China
Hao Zhang:State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China
Wei Tan:State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China
Shenghan Wu:State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China
Zheng Wang:State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China
Qiang Yang:State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China
and Guofan Jin:State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China

联系人作者:联系作者(clc@tsinghua.edu.cn)

备注:This work was supported by the National Basic Research Program of China (No.2013CB328801) and the National Natural Science Foundation of China (Nos.61505095 and 61205013).

【1】S. A. Benton, and V. M. Bove, Holographic Imaging (John Wiley and Sons, 2007).

【2】H. Zhang, Y. Zhao, L. Cao, and G. Jin, Chin. Opt. Lett.12, 060002 (2014).

【3】F. Yara, H. Kang, and L. Onural, J. Display Technol.6, 443 (2010).

【4】P. St. Hilaire, S. A. Benton, M. Lucente, M. L. Jepsen, J. Kollin, H. Yoshikawa, and J. Underkoffler, Proc. SPIE1212, 174 (1990).

【5】P. St. Hilaire, S. A. Benton, and M. Lucente, J. Opt. Soc. Am.9, 1969 (1992).

【6】D. E. Smalley, Q. Y. Smithwick, V. M. Bove, J. Barabas, and S. Jolly, Nature498, 313 (2013).

【7】C. W. Slinger, C. D. Cameron, S. D. Coomber, R. J. Miller, D. A. Payne, A. P. Smith, M. G. Smith, M. Stanley, and P. J. Watson, Proc. SPIE5290, 27 (2004).

【8】J. Hahn, H. Kim, Y. Lim, G. Park, and B. Lee, Opt. Express16, 12372 (2008).

【9】F. Yara , H. Kang, and L. Onural, Opt. Express19, 9147 (2011).

【10】H. Sasaki, K. Yamamoto, K. Wakunami, Y. Ichihashi, R. Oi, and T. Senoh, Sci. Rep.4, 6177 (2014).

【11】Y. Takaki, and M. Yokouchi, Opt. Express19, 7567 (2011).

【12】Y. Takaki, and K. Fujii, Opt. Express22, 24713 (2014).

【13】T. Inoue, and Y. Takaki, Opt. Express23, 6533 (2015).

【14】Y. Sando, D. Barada, and T. Yatagai, Opt. Lett.39, 5555 (2014).

【15】M. Lucente, J. Electronic Imaging2, 28 (1993).

【16】S. Kim, and E. Kim, Appl. Opt.47, D55 (2008).

【17】Y. Ogihara, and Y. Sakamoto, Appl. Opt.54, A76 (2015).

【18】K. Matsushima, Appl. Opt.44, 4607 (2005).

【19】H. Kim, J. Hahn, and B. Lee, Appl. Opt.47, D117 (2008).

【20】L. Ahrenberg, P. Benzie, M. Magnor, and J. Watson, Appl. Opt.47, 1567 (2008).

【21】J. Chen, D. Chu, and Q. Smithwick, J. Electronic Imaging23, 023016 (2014).

【22】J. Chen, and D. Chu, Opt. Express23, 18143 (2015).

【23】M. Bayraktar, and M. zcan, Appl. Opt.49, 4647 (2010).

【24】Y. Zhao, L. Cao, H. Zhang, D. Kong, and G. Jin, Opt. Express23, 25440 (2015).

【25】J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).

【26】H. Zhang, Q. Tan, and G. Jin, Opt. Eng.51, 075801 (2012).

引用该论文

Yan Zhao, Liangcai Cao, Hao Zhang, Wei Tan, Shenghan Wu, Zheng Wang, Qiang Yang, and Guofan Jin, "Time-division multiplexing holographic display using angular-spectrum layer-oriented method (Invited Paper)," Chinese Optics Letters 14(1), 010005 (2016)

CrossRef返回数据

【1】Wei-Feng Hsu, Ming-Hong Weng. Compact Holographic Projection Display Using Liquid-Crystal-on-Silicon Spatial Light Modulator. Materials, 2016, 9(9): 768 

【2】Yu Zhao, Ki-Chul Kwon, Munkh-Uchral Erdenebat, Md-Sifatul Islam, Seok-Hee Jeon, Nam Kim. Quality enhancement and GPU acceleration for a full-color holographic system using a relocated point cloud gridding method. Applied Optics, 2018, 57(15): 4253 

【3】Nan-Nan Li, Di Wang, Chao Liu, Shu-Feng Lin, Qiong-Hua Wang. Large-size holographic display method based on effective utilization of two spatial light modulators. Optics Communications, 2019, 453(): 124311 

【4】Nan-Nan Li, Su-Juan Liu, Di Wang, Qiong-Hua Wang. P‐84: A Method to Suppress the Speckle Noise of the Holographic Display Using Spatiotemporal Multiplexing Technology. SID Symposium Digest of Technical Papers, 2019, 50(1): 1549

【5】Chao Liu, Di Wang, Qiong-Hua Wang. Holographic display system with adjustable viewing angle based on multi-focus optofluidic lens. Optics Express, 2019, 27(13): 18210 

【6】Yu Zhao, Ki-Chul Kwon, Munkh-Uchral Erdenebat, Seok-Hee Jeon, Mei-Lan Piao, Nam Kim. Implementation of full-color holographic system using non-uniformly sampled 2D images and compressed point cloud gridding. Optics Express, 2019, 27(21): 29746 

【7】Zehao He, Xiaomeng Sui, Hao Zhang, Guofan Jin, Liangcai Cao. Frequency-based optimized random phase for computer-generated holographic display. Applied Optics, 2021, 60(4): A145 

【8】Yu Zhao, Chen-Xiao Shi, Ki-Chul Kwon, Yan-Ling Piao, Mei-Lan Piao, Nam Kim. Fast calculation method of computer-generated hologram using a depth camera with point cloud gridding. Optics Communications, 2018, 411(): 166 

【9】Di Wang, Nan-Nan Li, Chao Liu, Qiong-Hua Wang. Holographic display method to suppress speckle noise based on effective utilization of two spatial light modulators. Optics Express, 2019, 27(8): 11617 

【10】Ling Xin, Dan Xiao, Qiong‐Hua Wang. Method to suppress speckle noise using time multiplexing in phase‐only holographic display. Journal of the Society for Information Display, 2020, 28(7): 641

【11】Erdem Sahin, Elena Stoykova, Jani Mäkinen, Atanas Gotchev. Computer-Generated Holograms for 3D Imaging. ACM Computing Surveys, 2020, 53(2): 1 

【12】Xin Li, Juan Liu, Tao Zhao, Yongtian Wang. Color dynamic holographic display with wide viewing angle by improved complex amplitude modulation. Optics Express, 2018, 26(3): 2349 

【13】Jin Li, Quinn Smithwick, Daping Chu. Full bandwidth dynamic coarse integral holographic displays with large field of view using a large resonant scanner and a galvanometer scanner. Optics Express, 2018, 26(13): 17459 

【14】Di Wang, Chao Liu, Shu‐Feng Lin, Qiong‐Hua Wang. Holographic display technology based on liquid crystal device. Journal of the Society for Information Display, 2020, 28(2): 136

【15】Haowen Zhou, Xiaomeng Sui, Liangcai Cao, Partha P. Banerjee. Digital correlation of computer-generated holograms for 3D face recognition. Applied Optics, 2019, 58(34): G177 

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF