首页 > 论文 > 激光与光电子学进展 > 53卷 > 2期(pp:21002--1)

全天自主星图识别网格算法问题分析与改进

Analysis and Improvement of the Grid Algorithm for Autonomous Star Identification

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

在观测星数量较少时,匹配星数和边界距离的判定条件达不到网格法要求,同时由于网格法算法本身的原理局限,造成识别率明显下降。针对此问题提出一种改进的网格算法,在保证稳健性的前提下,有效提高星点识别率。实验结果表明,采用该算法,在星点数量少于10 颗的条件下,星点识别率从传统网格算法的95%提高到99%。同时,针对星图中未识别和误识别的星点进行的分析,能够为今后网格识别算法的进一步改进提供帮助。

Abstract

When the number of observed stars is few, the matching number of stars and the decision conditions of boundary distance do not satisfy the requirement the grid algorithm. Meanwhile because of the principle limits of the grid algorithm, the identification rate decreases obviously. According to these problems, an improved grid algorithm is put forward, and the identification rate of observed star increases effectively in precondition of ensuring the robustness. Experimental results show that the improved grid algorithm urges the identification rate increased from 95% to 99% compared with the traditional grid algorithm, under the condition that the number of observed star is less than 10. At the same time, the non-recognition and false-recognition stars in the star chart have been carried on the analysis, it can help to promote grid algorithm for star identification further.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O439

DOI:10.3788/lop53.021002

所属栏目:图像处理

基金项目:国家自然科学基金(61107005)

收稿日期:2015-05-23

修改稿日期:2015-06-24

网络出版日期:2016-01-13

作者单位    点击查看

唐武盛:国防科学技术大学理学院, 湖南 长沙 410073
杨建坤:国防科学技术大学理学院, 湖南 长沙 410073
衣文军:国防科学技术大学理学院, 湖南 长沙 410073
贾辉:国防科学技术大学理学院, 湖南 长沙 410073
程攀攀:国防科学技术大学理学院, 湖南 长沙 410073

联系人作者:唐武盛(949780584@qq.com)

备注:唐武盛(1990—),男,硕士研究生,主要从事信息光学方面的研究。

【1】Li Jing, Yang Baoxi, Hu Zhonghua, et al.. Development and performance testing of optical system for star sensor[J]. Acta Optica Sinica, 2013, 33(5): 0522005.
李璟, 杨宝喜, 胡中华, 等. 星敏感器光学系统的研制与性能测试[J]. 光学学报, 2013, 33(5): 0522005.

【2】Shi Hang, Zhu Zhigang. Image processing of the star sensor[J]. Optics & Optoelectronic Technology, 2014, 12(6): 58-60.
施航, 朱志刚. 星敏感器星图处理研究[J]. 光学与光电技术, 2014, 12(6): 58-60.

【3】Silani E, Lovera M. Star identification algorithms: Novel approach and comparison study[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(4): 1275-1288.

【4】Ran Xiaoqiang, Wen Desheng, Qiu Yuehong, et al.. A novel multi- triangle star pattern recognition algorithm[J]. Acta Photonica Sinica, 2009, 38(7): 1867-1871.
冉晓强, 汶德胜, 邱跃洪, 等. 一种新的多三角形星图识别算法[J]. 光子学报, 2009, 38(7): 1867-1871.

【5】Van Bezooijen R W H. True-sky demonstration of an autonomous star tracker[C]. Proc SPIE, 1994, 2221: 156-168.

【6】Na M, Jia P F. A survey of all-sky autonomous star identification algorithms[C]. ISSCA, 2006: 896-901.

【7】Na M, Zheng D N, Jia P F. Modified grid algorithm for noisy all-sky autonomous star identification[J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(2): 516-522.

【8】Padgett C, Kreutz-Delgado K. A grid algorithm for autonomous star identification[J]. IEEE Transactions on Aerospace and Electronic Systems, 1997, 33(1): 202-213.

【9】Jiang Ming, Yu Mingyan, Wang Jinxiang, et al.. A novel all-sky autonomous star pattern recognition algorithm[J]. Journal of Astronautics, 2007, 28(4): 1020-1024.
蒋明, 喻明艳, 王进祥, 等. 一种新的全天自主星图识别算法[J]. 宇航学报, 2007, 28(4): 1020-1024.

【10】Li Lihong, Xu Hongze, Zhang Fuen. A kind of improved grid algorithm for all-sky autonomous star field identification[J]. Optical Technique, 2000, 26(3): 204-210.
李立宏, 徐洪泽, 张福恩. 一种改进全天自主栅格星图识别算法[J]. 光学技术, 2000, 26(3): 204-210.

【11】Qian Huaming, Sun Long, Cai Jianan, et al.. An extended grid algorithm in star identification field[J]. Journal of Harbin Institute of Technology, 2015, 47(2): 110-116.
钱华明, 孙龙, 蔡佳楠, 等. 星图识别的一种扩充栅格算法[J]. 哈尔滨工业大学学报, 2015, 47(2): 110-116.

引用该论文

Tang Wusheng,Yang Jiankun,Yi Wenjun,Jia Hui,Cheng Panpan. Analysis and Improvement of the Grid Algorithm for Autonomous Star Identification[J]. Laser & Optoelectronics Progress, 2016, 53(2): 021002

唐武盛,杨建坤,衣文军,贾辉,程攀攀. 全天自主星图识别网格算法问题分析与改进[J]. 激光与光电子学进展, 2016, 53(2): 021002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF