光学学报, 2016, 36 (2): 0219002, 网络出版: 2016-01-25   

毫秒激光辐照单晶硅的在线应力损伤研究

Research on Real-Time Stress Damage of Millisecond Laser Irradiation on Single-Crystal Silicon
作者单位
长春理工大学理学院, 吉林 长春 130022
摘要
为了测量毫秒脉冲激光辐照非透明材料的在线应力及应力应变演化的过程,基于光学干涉理论,针对大功率固体激光器与材料的相互作用,采用马赫-曾德尔干涉的方法,得到了材料损伤的干涉条纹。通过对干涉条纹变化的分析与处理,可以得到材料在线应力及其演化过程。基于光学干涉理论,选择单晶硅作为实验材料,建立comsol仿真模型,并在理论及仿真的基础上开展实验。实验与仿真的r(x)方向误差在11.7%~33.91%之间,z(y,z)方向误差在20.25%~31.34%之间,说明用马赫-曾德尔干涉的方法测量非透明材料的应力具有可行性。实验研究为激光与非透明材料作用过程中在线应力损伤及演变过程研究提供了一个新的方法。
Abstract
In order to measure the millisecond pulse laser irradiation of transparent material real-time stress and stress strain evolution process, in view of the high power solid laser interaction with materials, the method of Mach- Zehnder interference to get the interference fringes by the material damage is adopted. The on-line stress and the evolution of the material are obtained through the analysis and the processing of the change of the interference fringe. Single-crystal silicon is selected as experiment material and comsol simulation model is established based on the optical interference theory. Based on the theory and the simulation, the experiment is carried out. The error of experiment and simulation in r(x) direction is between 11.7% ~33.91%, and the error in z (y, z) direction is between 20.25% ~31.34% , which shows measuring the stress of the transparent material with Mach- Zehnder transient interference method is feasible. This provides a new method for the research of real-time stress damage and its evolution process of laser interaction with none-transparent materials.

李贺, 蔡继兴, 谭勇, 马遥, 郭明, 金光勇, 吴春婷. 毫秒激光辐照单晶硅的在线应力损伤研究[J]. 光学学报, 2016, 36(2): 0219002. Li He, Cai Jixing, Tan Yong, Ma Yao, Guo Ming, Jin Guangyong, Wu Chunting. Research on Real-Time Stress Damage of Millisecond Laser Irradiation on Single-Crystal Silicon[J]. Acta Optica Sinica, 2016, 36(2): 0219002.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!