首页 > 论文 > 中国激光 > 43卷 > 2期(pp:208001--1)

激光散斑三维形貌绝对测量技术

Three-Dimensional Shape Absolute Measurement Based on Laser Speckles

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为了实现对物体的三维形貌绝对测量,避免相位解包裹处理,研究实现了一种基于激光散斑场纵向相关性质的三维形貌绝对测量技术。实验研究了激光散斑场纵向相关性质,利用CCD 相机拍摄不同纵向深度的散斑图,通过相关运算获得散斑图的纵向深度与横向偏移之间的线性关系。利用这一线性关系,实现了对处于激光散斑场中的物体表面到参考面之间高度的绝对测量,三维形貌重建无需相位解包裹处理,并且由于激光散斑场是激光照射毛玻璃形成的,避免了投影数字散斑技术中的透镜投影系统,技术装置简单,操作方便。该技术有望在实践中获得应用。

Abstract

The longitudinal coherence properties of laser speckles are investigated. The properties are then utilized for three-dimensional (3-D) shape absolute measurement, bringing a feature that phase unwrapping is released. A sequence of speckle images is captured by a CCD camera at different longitudinal positions. The lateral displacement of the speckle can be obtained by calculating the correlation among the speckle images. According to the relationship between the longitudinal length and the lateral displacement, the absolute measurement of height from the object surface to reference plane can be realized. Additionally, the phase unwrapping process is released in data processing. A projection-lens system in the technique of projected digital speckle patterns is also released, because the laser speckle field is generated by a laser which illuminates on a frosted glass. The structure of the system is simple and convenient for implement. This technique is potential to be used in practice.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O439

DOI:10.3788/cjl201643.0208001

所属栏目:测量与计量

基金项目:国家自然科学基金(61475064、41206081)、广东省科技计划项目(2013B060100001)

收稿日期:2015-08-12

修改稿日期:2015-10-08

网络出版日期:--

作者单位    点击查看

赵明路:暨南大学光电工程系, 广东 广州 510632
马骁:暨南大学光电工程系, 广东 广州 510632
张子邦:暨南大学光电工程系, 广东 广州 510632
梁曼:暨南大学光电工程系, 广东 广州 510632
李莹:暨南大学光电信息与传感技术广东普通高校重点实验室, 广东 广州 510632暨南大学华文学院, 广东 广州 510610
钟金钢:暨南大学光电工程系, 广东 广州 510632暨南大学光电信息与传感技术广东普通高校重点实验室, 广东 广州 510632

联系人作者:赵明路(milozhao@live.cn)

备注:赵明路(1988—),男,硕士研究生,主要从事光学检测方面的研究。

【1】Toyooka S, Tominaga M. Spatial fringe scanning for optical phase measurement[J]. Opt Commun, 1984, 51(2): 68-70.

【2】Chen W, Tan Y, Zhao H. Automatic analysis technique of spatial carrier-fringe patterns[J]. Opt & Lasers in Eng, 1996, 25(2): 111-120.

【3】苏显渝, 李继陶. 三维面形测量技术的新进展[J]. 物理, 1996, 25(10): 614-620.

【4】He Dong, Liu Xiaoli, Yin Yongkai, et al.. Three dimensional imaging based on combination fringe and pseudorandom pattern projection [J]. Chinese J Lasers, 2014, 41(2): 0209021.
何懂, 刘晓利, 殷永凯, 等. 结合条纹和伪随机结构光投影的三维成像[J]. 中国激光, 2014, 41(2): 0209021.

【5】Su Xianyu, Zhang Qican, Chen Wenjing. Three-dimensional imaging based on structured illumination[J]. Chinese J Lasers, 2014, 41 (2): 0209001.
苏显渝, 张启灿, 陈文静. 结构光三维成像技术[J]. 中国激光, 2014, 41(2): 0209001.

【6】Chen Xiaorong, Cai Ping, Shi Wenkang. The latest development of optical non-contact 3-D profile measurement[J]. Optics and Precision Engineering, 2002, 10(5): 528-532.
陈晓荣, 蔡萍, 施文康. 光学非接触三维形貌测量技术新进展[J]. 光学精密工程, 2002, 10(5): 528-532.

【7】S S Gorthi, P Rastogi. Fringe projection techniques: whither we are?[J]. Opt & Lasers in Eng, 2010, 48(2): 133-140.

【8】Takeda M, Ina H, Kobayashi S. Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry [J]. J Opt Soc Am A, 1982, 72(1): 156-160.

【9】Itoh K. Analysis of the phase unwrapping algorithm[J]. Appl Opt, 1982, 21(14): 2470.

【10】Macy W W. Two-dimensional fringe-pattern analysis[J]. Appl Opt, 1983, 22(23): 3898-3901.

【11】Sj?dahl M, Synnergren P. Measurement of shape by using projected random patterns and temporal digital speckle photography[J]. Appl Opt, 1999, 38(10): 1990-1997.

【12】杨国标, 方如华, 丁祖泉, 等. 投影散斑相关法在物体三维形状测量中的原理研究及应用[C]. 第九届全国实验力学学术会议, 2000.

【13】Dai Hongjun, Su Xianyu. Shape measurement by digital speckle temporal sequence correlation method[J]. Acta Optica Sinica, 2001, 21 (10): 1208-1213.
代红军, 苏显渝. 数字散斑时间序列相关三维面形测量方法[J]. 光学学报, 2001, 21(10): 1208-1213.

【14】Chen Suting, Zhang Yong, Hu Haifeng. Surface roughness measurement based on fractal dimension of laser speckle[J]. Chinese J Lasers, 2015, 42(4): 0408002.
陈苏婷, 张勇, 胡海锋. 基于激光散斑分形维数的表面粗糙度测量方法[J]. 中国激光, 2015, 42(4): 0408002.

【15】Peters W H, Ranson W F. Digital imaging techniques in experimental stress analysis[J]. Opt Eng, 1982, 21(3): 213427.

【16】Joseph W Goodman. Speckle Phenomena in Optics: Theory and Applications[M]. Cao Qizhi, Chen Jiabi, Transl. Beijing: Science Press, 2009: 69-71.
古德曼. 光学中的散斑现象:理论与应用[M]. 曹其智, 陈家璧, 译. 北京: 科学出版社, 2009: 69-71.

【17】Leushacke L, Kirchner M. Three-dimensional correlation coefficient of speckle intensity for rectangular and circular apertures[J]. J Opt Soc Am A, 1990, 7(5): 827-832.

【18】Li Q B, Chiang F P. Three-dimensional dimension of laser speckle[J]. Appl Opt, 1992, 31(29): 6287-6291.

【19】Gatti A, Magatti D, Ferri F. Three-dimensional coherence of light speckles: theory[J]. Phys Rev A, 2008, 78(6): 063806.

【20】Magatti D, Gatti A, Ferri F. Three-dimensional coherence of light speckles: experiment[J]. Phys Rev A, 2009, 79(5): 053831.

【21】Cai Huaiyu, Jiao Mengjin, Huang Zhanhua, et al.. A phase encoding modulation method increase the longitudinal correlation of speckle fields[J]. Laser & Optoelectronics Progress, 2014, 51(10): 101203.
蔡怀宇, 焦梦锦, 黄战华, 等. 提高散斑场纵向相关性的相位编码调制方法[J]. 激光与光电子学进展, 2014, 51(10): 101203.

【22】Dong Xiaolong, Guo Tailiang. Three-dimensional reconstruction method based on decorrelation of speckle patterns[J]. Computer and Modernization, 2012, (7): 83-87.
董小龙, 郭太良. 一种基于激光散斑去相关技术的三维重建方法[J]. 计算机与现代化, 2012, (7): 83-87.

引用该论文

Zhao Minglu,Ma Xiao,Zhang Zibang,Liang Man,Li Ying,Zhong Jingang. Three-Dimensional Shape Absolute Measurement Based on Laser Speckles[J]. Chinese Journal of Lasers, 2016, 43(2): 0208001

赵明路,马骁,张子邦,梁曼,李莹,钟金钢. 激光散斑三维形貌绝对测量技术[J]. 中国激光, 2016, 43(2): 0208001

被引情况

【1】何进英,刘晓利,彭翔,李阿蒙,蔡泽伟. 基于灰度约束的三维数字散斑整像素相关搜索. 中国激光, 2017, 44(4): 404003--1

【2】吴佳琛,曹良才,陈海龙,彭翔,金国藩. 彩色三维扫描中纹理重建技术研究进展. 激光与光电子学进展, 2018, 55(11): 110004--1

【3】李东晖. 基于上下文的黑白散斑图像压缩. 激光与光电子学进展, 2018, 55(12): 121010--1

【4】马国庆,刘丽,于正林,曹国华,王强. 基于iGPS定位跟踪的三维形貌测量系统标定方法. 中国激光, 2019, 46(1): 104003--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF